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“La Dynamique est la science des forces acci.lhra- 
trices or retardatrices, et des mouvernens varigs 
qu’elles doivent produire. Cette science est due 
entierement aux modernes, et  Galike est celui qui 
en a jet6 les premiers fondemens.” Lagrange Mec. 
Anal. I. 221. 

TRANSLATQRS’ PREFACE 

OR more than a century English speaking 
students have been placed in the anomalous 
position of hearing Galileo constantly re- 
ferred to as the founder of modern physical 
science, without having any chance to read, 
in their own language,’ what Galileo himself 
has to say. Archimedes has been made 
available by Heath; Huygens’ Light has been 

turned into English by Thompson, while Motte has put the 
Principia of Newton back into the language in which i t  was 
conceived. To render the Physics of Galileo also accessible to 
English and American students is the purpose of the following 
translation. 

The last of the great creators of the Renaissance was not a 
prophet without honor in his own time; for it was only one 
group of his country-men that failed to appreciate him. Even 
during his life time, his Mechanics had been rendered into French 
by one of the leading physicists of the world, Mersenne. 

Within twenty-five years after the death of Galileo, his Dia- 
logues on Astronomy, and those on Two New Sciences, had been 
done into English by Thomas Salusbury and were worthily 
printed in two handsome quarto volumes. The Two New 
Sciences, which contains practically all that Galileo has to say on 
the subje& of physics, issued from the English press in 1665. 
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It is supposed that most of the copies were destroyed in the great 
London fire which occurred in the year following. We are not 
aware of any copy in America: even that belonging to the British 
Museum is an impede& one. 

Again in I730 the Two New Sciences was done into English 
by Thomas Weston; but this book, now nearly two centuries 
old, is scarce and expensive. Moreover, the literalness with 
which this translation was made renders many passages either 
ambiguous or unintelligible to the modern reader. Other than 
these two, no English version has been made. 

Quite recently an eminent Italian scholar, after spending 
thirty of the best years of his life upon the subje&, has brought 
to completion the great National Edition of the Works of 
Galileo. We refer to the twenty superb volumes in which Pro- 
fessor Antonio Favaro of Padua has given a definitive presenta- 
tion of the labors of the man who created the modern science of 
physics. 

The following rendition includes neither Le Mechaniche of 
Galileo nor his paper De Motu Accelerato, since the former of 
these contains little but the Statics which was current before 
the time of Galileo, and the latter is essentially included in the 
Dialogue of the Third Day. Dynamics was the one subje& to 
which under various forms, such as Ballistics, Acoustics, As- 
tronomy, he consistently and persistently devoted his whole 
life. Into the one volume here translated he seems to have 
gathered, during his last years, prattically all that is of value 
either to the engineer or the physicist. The historian, the 
philosopher, and the astronomer will find the other volumes 
replete with interesting material. 

It is hardly necessary to add that we have stri&ly followed the 
text of the National Edition-essentially the Elzevir edition of 
1638. All comments and annotations have been omitted save 
here and there a foot-note intended to economize the reader’s 
time. To each c,C these footnotes has been attached the signa- 
ture [Trans.] in order to preserve the original as nearly inta& as 
possible. 

Much of the value of any historical document lies in the lan- 
guage employed, and this is doubly true when one attempts to 
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trace the rise and growth of any set of concepts such as those 
employed in modern physics. \Ve have therefore made this 
translation as literal as is consistent with clearness and modern- 
ity. In cases where there is any important deviation from this 
rule, and in the case of many technical terms where there is no 
deviation from it, we have given the original Italian or Latin 
phrase in italics enclosed in square brackets. The intention 
here is to illustrate the great variety of terms employed by the 
early physicists to describe a single definite idea, and conversely, 
to illustrate the numerous senses in which, then as now, a single 
word is used. For the few explanatory English words which are 
placed in square brackets without italics, the translators alone 
are responsible. The paging of the National Edition is indicated 
in square brackets inserted along the median line of the page. 

The imperfeCtions of the following pages would have been 
many more but for the aid of three of our colleagues. Professor 
D. R. Curtiss was kind enough to assist in the translation of 
those pages which discuss the nature of Infinity: Professor 0. H. 
Basquin gave valuable help in the rendition of the chapter on 
Strength of Materials; and Professor 0. F. Long cleared up the 
meaning of a number of Latin phrases. 

T o  Professor A. Favaro of the University of Padua the trans- 
lators share, with every reader, a feeling of sincere obligation 
for his IntroduLtion. 

H. C. 
A. DE s. 

EVANSTON, ILLINOIS, 
15 February, 1914. 
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INTRODUCTION 
RITING to his faithful friend Elia Diodati, 
Galileo speaks of the “New Sciences” which 
he had in mind to print as being “superior 
to everything else of mine hitherto pub- 
lished”; elsewhere he says “they contain 
results which I consider the most important 
o€ all my studies”; and this opinion which 
he expressed concerning his own work has 

been confirmed by posterity: the “New Sciences” are, indeed, 
the masterpiece of Galileo who at  the time when he made the 
above remarks had spent upon them more than thirty laborious 
years. 

One who wishes to trace the history of this remarkable work 
will find that the great philosopher laid its foundations during 
the eighteen best years of his l i fe those  which he spent at 
Padua. As we learn from his last scholar, Vincenzio Viviani, 
the numerous results at  which Galileo had arrived while in this 
city, awakened intense admiration in the friends who had wit- 
nessed various experiments by means of which he was accus- 
tomed to investigate interesting questions in physics. Fra Paolo 
Sarpi exclaimed: To give us the Science of Motion, God and 
Nature have joined hands and created the intellec? of Galileo. 
And when the “New Sciences” came from the press one of his 
foremost pupils, Paolo Aproino, wrote that the volume contained 
much which he had “already heard from his own lips” during 
student days at  Padua. 

Limiting ourselves to only the more important documents 
which might be cited in support of our statement, i t  will suffice 
to mention the letter, written to Guidobaldo del Monte on the 
29th of November, 1602, concerning the descent of heavy bodies 
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along the arcs of circles and the chords subtended by them; that 
to Sarpi, dated 16th of October, 1604, dealing with the free fall 
of heavy bodies; the letter to Antonio de’ Medici on the 11th 
of February, 1609, in which he states that he has “completed all 
the theorems and demonstrations pertaining to forces and re- 
sistances of beams of various lengths, thicknesses and shapes, 
proving that they are weaker a t  the middle than near the ends, 
that they can carry a greater load when that load is distributed 
throughout the length of the beam than when concentrated at  
one point, demonstrating also what shape should be given to a 
beam in order that it may have the same bending strength at  
every point,” and that he was now engaged “upon some ques- 
tions dealing with the motion of projettiles”; and finally in the 
letter to Belisario Vinta, dated 7th of May, 1610, concerning 
his return from Padua to Florence, he enumerates various pieces 
of work which were still to be completed, mentioning explicitly 
three books on an entirely new science dealing with the theory 
of motion. Although a t  various times after the return to his 
native state he devoted considerable thought to the work which, 
even at  that date, he had in mind as is shown by certain frag- 
ments which clearly belong to different periods of his life and 
which have, for the first time, been published in the National 
Edition; and although these studies were always uppermost in 
his thought it does not appear that he gave himself seriously to 
them until after the publication of the Dialogue and the com- 
pletion of that trial which was rightly described as the disgrace 
of the century. In fa& as late as October, 1630, he barely men- 
tions to Aggiunti his discoveries in the theory of motion, and 
only two years later, in a letter to Marsili concerning the motion 
of proje&iles, he hints a t  a book nearly ready for publication in 
which he will treat also of this subjeft; and only a year after 
this he writes to Arrighetti that he has in hand a treatise on the 
resistance of solids. 

But the work was given definite form by Galileo during his 
enforced residence a t  Siena: in these five months spent quietly 
with the Archbishop he himself writes that he has completed 

a treatise on a new branch of mechanics full of interesting and 
useful ideas”; so that a few months later he was able to send 
66 
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word toMicanzio that the "work was ready"; as soon as his 
friends learned of this, they urged its publication. It was, how- 
ever, no easy matter to print the work of a man already con- 
demned by the Holy Oflice: and since Galileo could not hope to 
print it either in Florence or in Rome, he turned to the faithful 
Micanzio asking him to find out whether this would be possible 
in Venice, from whence he had received offers to print the Dia- 
logue on the Principal Systems, as soon as the news had reached 
there that he was encountering difficulties. At first everything 
went smoothly; so that Galileo commenced sending to Micanzio 
some of the manuscript which was received by the latter with 
an enthusiasm in which he was second to none of the warmest 
admirers of the great philosopher. But when Micanzio con- 
sulted the Inquisitor, he received the answer that there was 
an express order prohibiting the printing or reprinting of any 
work of Galileo, either in Venice or in any other place, null0 
excepto. 

As soon as Galileo received this discouraging news he began 
to look with more favor upon offers which had come to him from 
Germany where his friend, and perhaps also his scholar, Gio- 
vanni Battista Pieroni, was in the service of the Emperor, as 
military engineer; consequently Galileo gave to Prince Mattia 
de' Medici who was just leaving for Germany the first two Dia- 
logues to be handed to Pieroni who was undecided whether to 
publish them at  Vienna or Prague or a t  some place in Moravia; 
in the meantime, however, he had obtained permission to print 
both a t  Vienna and a t  Olmiitz. But Galileo recognized danger 
at every point within reach of the long arm of the Court of 
Rome; hence, availing himself of the opportunity offered by the 
arrival of Louis Elzevir in Italy in 1636, also of the friendship 
between the latter and Micanzio, not to mention a visit at  
Arcetri, he decided to abandon all other plans and entrust to 
the Dutch publisher the printing of his new work the manu- 
script of which, although not complete, Elzevir took with him 
on his return home. 

In the course of the year 1637, the printing was finished, and 
at the beginning of the following year there was lacking only 
the index, the title-page and the dedication. This last had, 
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through the good offices of Diodati, been offered to the Count of 
Noailles, a former scholar of Galileo at  Padua, and since 1634 
ambassador of France at  Rome, a man who did much to alleviate 
the distressing consequences of the celebrated trial; and the 
offer was gratefully accepted. The phrasing of the dedication 
deserves brief comment. Since Galileo was aware, on the one 
hand, of the prohibition against the printing of his works and 
since, on the other hand, he did not wish to irritate the Court 
of Rome from whose hands he was always hoping for complete 
freedom, he pretends in the dedicatory letter (where, probably 
through excess of caution, he gives only main outlines) that he 
had nothing to do with the printing of his book, asserting that 
he will never again publish any of his researches, and will a t  
most distribute here and there a manuscript copy. He even 
expresses great surprise that his new Dialogues have fallen into 
the hands of the Elzevirs and were soon to be published; so 
that, having been asked to write a dedication, he could think of 
no man more worthy who could also on this occasion defend 
him against his enemies. 

As to the title which reads: Discourses and Mathematical 
Demonstrations concerning Two New Sciences pertaining to Me- 
chanics and Local Motions, this only is known, namely, that the 
title is not the one which Galileo had devised and suggested; in 
fact he protested against the publishers taking the liberty of 
changing it and substituting “a low and common title for the 
noble and dignified one carried upon the title-page.” 

In reprinting this work in the National Edition, I have fol- 
lowed the Leyden text of 1638 faithfully but not slavishly, be- 
cause I wished to utilize the large amount of manuscript ma- 
terial which has come down to us, for the purpose of correciting 
a considerable number of errors in this first edition, and also 
for the sake of inserting certain additions desired by the author 
himself. In the Leyden Edition, the four Dialogues are followed 
by an “Appendix containing some theorems and their proofs, deal- 
ing with centers of gravity of solid bodies, written by the same 
Author at an  earlier date,” which has no immediate connedtion 
with the subjecits treated in the Dialogues; these theorems were 
found by Galileo, as he tells us, “at  the age of twenty-two and 
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after two years study of geometry” and were here inserted only 
to save them from oblivion. 

But it was not the intention of Galileo that the Dialogues 
on the New Sciences should contain only the four Days and the 
above-mentioned appendix which constitute the Leyden Edi- 
tion; while, on the one hand, the Elzevirs were hastening the 
printing and striving to complete it a t  the earliest possible date, 
Galileo, on the other hand, kept on speaking of another Day, 
besides the four, thus embarrassing and perplexing the printers. 
From the correspondence which went on between author and 
publisher, it appears that this Fifth Day was to have ireated 
“of the force of percussion and the use of the catenary”; but 
as the typographical work approached completion, the printer 
became anxious for the book to issue from the press without 
further delay; and thus it came to pass that the Discorsi e 
Dimostrazioni appeared containing only the four Days and the 
Appendix, in spite of the fa& that in April, 1638, Galileo had 
plunged more deeply than ever “into the profound question of 
percussion” and “had almost reached a complete solution.” 

The “New Sciences” now appear in an edition following the 
text which I, after the most careful and devoted study, deter- 
mined upon for the National Edition. It appears also in that 
language in which, above all others, I have desired to see it. In 
this translation, the last and ripest work of the great philosopher 
makes its first appearance in the New World: if toward this 
important result I may hope to have contributed in some meas- 
ure I shall feel amply rewarded for having given to this field of 
research the best years of my life. 

ANTONIO FAVARO. 
UNIVERSITY OF PADUA, 

27th of October, 1913. 



FIRST DAY 
INTERLOCUTORS: SALVIATI, SA- 

GREDO AND SIMPLICIO 
ALV. The constant activity which you Vene- 
tians display in your famous arsenal suggests 
to the studious mind a large field for investi- 
gation, especially that part of the work 
which involves mechanics; for in this depart- 
ment all types of instruments and machines 
are constantly being construdted by many 
artisans, among whom there must be some 

who, partly by inherited experience and partly by their own ob- 
servations, have become highly expert and clever in explanation. 

SAGR. You are quite right. Indeed, I myself, being curious 
by nature, frequently visit this place for the mere pleasure of 
observing the work of those who, on account of their superiority 
over other artisans, we call “first rank men.” Conference with 
them has often helped me in the investigation of certain effects 
including not only those which are stI-l,king, but also those which 
are recondite and almost incredible. At times also I have been 
put to confusion and driven to despair of ever explaining some- 
thing for which I could not account, but which my senses told 
me to be true. And notwithstanding the fa& that what the old 
man told us a little while ago is proverbial and commonly 
accepted, yet it seemed to me altogether false, like many another 
saying which is current among the ignorant; for I think they 
introduce these expressions in order to give the appearance of 
knowing something about matters which they do not understand. 

Salv. 
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SALV. You refer, perhaps, to that last remark of his when we 
asked the reason why they employed stocks, scaffolding and 
bracing of larger dimensions for launching a big vessel than they 
do for a small one; and he answered that they did this in order to 
avoid the danger of the ship parting under its own heavy weight 
[oasta mole], a danger to which small boats are not subjee? 

SAGK. Yes, that is what I mean; and I refer especially to his 
last assertion which I have always regarded as a false, though 
current, opinion; namely, that in speaking of these and other 
similar machines one cannot argue from the small to the large, 
because many devices which succeed on a small scale do not 
work on a large scale. Now, since mechanics has its foundation 
in geometry, where mere size cuts no figure, I do not see that the 
properties of circles, triangles, cylinders, cones and other solid 
figures will change with their size. If, therefore, a large machine 
be constru&ed in such a way that its parts bear to one another 
the same ratio as in a smaller one, and if the smaller is sufficiently 
strong for the purpose for which it was designed, I do not see 
why the larger also should not be able to withstand any severe 
and destru&ive tests to which it may be subje&ed. 

SALV. The common opinion is here absolutely wrong. Indeed, 
it is so far wrong that precisely the opposite is true, namely, 
that many machines can be constru&ed even more perfe&ly on a 
large scale than on a small; thus, for instance, a clock which indi- 
cates and strikes the hour can be made more accurate on a large 
scale than on a small. There are some intelligent people who 
maintain this same opinion, but on more reasonable grounds, 
when they cut loose from geometry and argue that the better 
performance of the large machine is owing to the imperfeCtions 
and variations of the material. Here I trust you will not charge 

me with arrogance if I say that imperfeCtions in the material, 
even those which are great enough to invalidate the clearest 
mathematical proof, are not sufficient to explain the deviations 
observed between machines in the concrete and in the abstraCt. 
Yet I shall say it and will affirm that, even if the imperfeCtions 

did 

[SI] 
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did not exist and matter were absolutely perfect, unalterable and 
free from all accidental variations, still the mere fact that it is 
matter makes the larger machine, built of the same material 
and in the same proportion as the smaller, correspond with 
exattness to the smaller in every respect except that it will not 
be so strong or so resistant against violent treatment; the 
larger the machine, the greater its weakness. Since I assume 
matter to be unchangeable and always the same, it is clear that 
we are no less able to treat this constant and invariable property 
in a rigid manner than if it belonged to simple and pure mathe- 
matics. Therefore, Sagredo, you would do well to change the 
opinion which you, and perhaps also many other students of 
mechanics, have entertained concerning the ability of machines 
and structures to resist external disturbances, thinking that 
when they are built of the same material and maintain the same 
ratio between parts, they are able equally, or rather propor- 
tionally, to resist or yield to such external disturbances and 
blows. For we can demonstrate by geometry that the large 
machine is not proportionately stronger than the small. Finally, 
we may say that, for every machine and struCture, whether 
artificial or natural, there is set a necessary limit beyond which 
neither art nor nature can pass; it is here understood, of course, 
that the material is the same and the proportion preserved. 

SAGR. My brain already reels. My mind, like a cloud momen- 
tarily illuminated by a lightning-flash, is for an instant filled 
with an unusual light, which now beckons to me and which now 
suddenly mingles and obscures strange, crude ideas. From 
what you have said it appears to me impossible to build two 
similar structures of the same material, but of different sizes and 
have them proportionately strong; and if this were so, it would 

not be possible to find two single pole$ made of the same n-ood 
which shall be alike in strength and resistance but unlike in 
size. 

SALV. So it is, Sagredo. And to make sure that we understand 
each other, I say that if we take a wooden rod of a certain 
length and size, fitted, say, into a wall a t  right angles, i. e., 

parallel 

[szl 
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parallel to the horizon, it may be reduced to such a length that 
it will just support itself; so that if a hair’s breadth be added to 
its length it will break under its own weight and will be the only 
rod of the kind in the world.* Thus if, for instance, its length be 
a hundred times its breadth, you will not be able to find another 
rod whose length is also a hundred times its breadth and which, 
like the former, is just able to sustain its own weight and no 
more: all the larger ones will break while all the shorter ones will 
be strong enough to support something more than their own 
weight. And this which I have said about the ability to support 
itself must be understood to apply also to other tests; so that if a 
piece of scantling [co.rente] will carry the weight of ten similar to 
itself, a beam [truw] having the same proportions will not be 
able to support ten similar beams. 

Please observe, gentlemen, how fa& which a t  first seem 
improbable will, even on scant explanation, drop the cloak 
which has hidden them and stand forth in naked and simple 
beauty. Who does not know that a horse falling from a height 
of three or four cubits will break his bones, while a dog falling 
from the same height or a cat from a height of eight or ten cubits 
will suffer no injury? Equally harmless would be the fall of a 
grasshopper from a tower or the fall of an ant from the distance 
of the moon. Do not children fall with impunity from heights 
which would cost their elders a broken leg or perhaps a frattured 
skull? And just as smaller animals are proportionately stronger 
and more robust than the larger, so also smaller plants are able 
to stand up better than larger. I am certain you both know that 
an oak two hundred cubits [braccia] high would not be able to 
sustain its own branches if they were distributed as in a tree of 
ordinary size; and that nature cannot produce a horse as large as 
twenty ordinary horses or a giant ten times taller than an 

[531 
ordinary man unless by miracle or by greatly altering the 
proportions of his limbs and especially of his bones, which would 
have to be considerably enlarged over the ordinary. Likewise 
the current belief that, in the case of artificial machines the very 

*The author here apparently means that the solution is unique. 

THE TWO NEW SCIENCES OF GALILEO 

[Trans.] 



FIRST DAY 5 
large and the small are equally feasible and lasting is a manifest 
error. Thus, for example, a small obelisk or column or other 
solid figure can certainly be laid down or set up without danger 
of breaking, while the very large ones will go to pieces under the 
slightest provocation, and that purely on account of their own 
weight. And here I must relate a circumstance which is worthy 
of your attention as indeed are all events which happen contrary 
to expektation, especially when a precautionary measure turns 
out to be a cause of disaster. A large marble column was laid 
out so that its two ends rested each upon a piece of beam; a 
little later it occurred to a mechanic that, in order to be doubly 
sure of its not breaking in the middle by its own weight, it would 
be wise to lay a third support midway; this seemed to all an 
excellent idea; but the sequel showed that it was quite the oppo- 
site, for not many months passed before the column was found 
cracked and broken exahly above the new middle support. 

SIMP. A very remarkable and thoroughly unexpehed acci- 
dent, especially if caused by placing that new support in the 
middle. 

SALV. Surely this is the explanation, and the moment the 
cause is known our surprise vanishes; for when the two pieces 
of the column were placed on level ground it was observed that 
one of the end beams had, after a long while, become decayed 
and sunken, but that the middle one remained hard and strong, 
thus causing one half of the column to projeh in the air without 
any support. Under these circumstances the body therefore 
behaved differently from what it would have done if supported 
only upon the first beams; because no matter how much they 
might have sunken the column would have gone with them. 
This is an accident which could not possibly have happened to a 
small column, even though made of the same stone and having a 
length corresponding to its thickness, i. e., preserving the ratio 
between thickness and length found in the large pillar. 

is41 
SAGR. I am quite convinced of the fa& of the case, but I do 

not understand why the strength and resistance are not multi- 
plied in the same proportion as the material; and I am the more 

puzzled 
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puzzled because, on the contrary, I have noticed in other cases 
that the strength and resistance against breaking increase in a 
larger ratio than the amount of material. Thus, for instance, if 
two nails be driven into a wall, the one which is twice as big 
as the other will support not only twice as much weight as the 
other, but three or four times as much. 

SALV. Indeed you will not be far wrong if you say eight times 
as much; nor does this phenomenon contradi& the other even 
though in appearance they seem so different. 

SAGR. Will you not then, Salviati, remove these difficulties 
and clear away these obscurities if possible: for I imagine that 
this problem of resistance opens up a field of beautiful and useful 
ideas; and if you are pleased to make this the subje& of to-day’s 
discourse you will place Simplicio and me under many obliga- 
tions. 

SALV. I am at  your service if only I can call to mind what I 
learned from our Academician * who had thought much upon 
this subje& and according to his custom had demonstrated 
everything by geometrical methods so that one might fairly 
call this a new science. For, although some of his conclusions 
had been reached by others, first of all by Aristotle, these are 
not the most beautiful and, what is more important, they had 
not been proven in a rigid manner from fundamental principles. 
Now, since I wish to  convince you by demonstrative reasoning 
rather than to persuade you by mere probabilities, I shall sup- 
pose that you are familiar with present-day mechanics so far as 
i t  is needed in our discussion. First of all it  is necessary to 
consider what happens when a piece of wood or any other solid 
which coheres firmly is broken; for this is the fundamental 
fa&, involving the first and simple principle which we must take 
for granted as well known. 

To grasp this more clearly, imagine a cylinder or prism, AB, 
made of wood or other solid coherent marerial. Fasten the 
upper end, A, so that the cylinder hangs vertically. To the 
lower end, B, attach the wight  C. It is clear that however 
great they may be, the tenacity and coherence [tenacit; e 

* I. e. Galileo: T h e  author  frequently refers to himself under this 
name. [Trans.] 



FIRST DAY 7 
[551 

coerenza] between the parts of this solid, so long as they are not 
infinite, can be overcome by the pull of the weight C, a weight 
which can be increased indefinitely until finally the solid breaks 
like a rope. And as in the case of the rope whose strength we 
know to be derived from a multitude of hemp threads which 
compose it, so in the case of the wood, we observe its fibres and 
filaments run lengthwise and render it much stronger than a 
hemp rope of the same thickness. But in the 
case of a stone or metallic cylinder where the 
coherence seems to be still greater the cement 
which holds the parts together must be some- 
thing other than filaments and fibres; and yet 
even this can be broken by a strong pull. 

SIMP. If this matter be as you say I can well 
understand that the fibres of the wood, being as 
long as the piece of wood itself, render it strong 
and resistant against large forces tending to 
break it. But how can one make a rope one 
hundred cubits long out of hempen fibres which 
are not more than two or three cubits long, and 
still give it so much strength? Besides, I should 
be glad to hear your opinion as to the manner in 
which the parts of metal, stone, and otherama- 
terials not showing a filamentous strudture are 
put together; for, if I mistake not, they exhibit even greater 
tenacity. 

SALV. To solve the problems which you raise it will be neces- 
sary to make a digression into subje&s which have little bearing 
upon our present purpose. 

SAGR. But if, by digressions, we can reach new truth, what 
harm is there in making one now, so that we may not lose 
this knowledge, remembering that such an opportunity, once 
omitted, may not return; remembering also that we are not tied 
down to a fixed and brief method but that we meet solely for our 
own entertainment? Indeed, who knows but that we may thus 

frequently 

Fig. I 
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frequently discover something more interesting and beautiful 
than the solution originally sought? I beg of you, therefore, to 
grant the request of Sirnplicio, which is also mine; for I am no 
less curious and desirous than he to learn what is the binding 
material which holds together the parts of solids so that they 
can scarcely be separated. This information is also needed to 
understand the coherence of the parts of fibres themselves of 
which some solids are built up. 

SALV. I am at your service, since you desire it. The first 
question is, How are fibres, each not more than two or three 
cubits in length, so tightly bound together in the case of a rope 
one hundred cubits long that great force [violenza] is required to 
break it? 

Now tell me, Simplicio, can you not hold a hempen fibre so 
tightly between your fingers that I, pulling by the other end, 
would break it before drawing it away from you? Certainly 
you can. And now when the fibres of hemp are held not only at  
the ends, but are grasped by the surrounding medium through- 
out their entire length is it not manifestly more difficult to tear 
them loose from what holds them than to break them? But in 
the case of the rope the very a& of twisting causes the threads 
to bind one another in such a way that when the rope is stretched 
with a great force the fibres break rather than separate from 
each other. 

At the point where a rope parts the fibres are, as everyone 
knows, very short, nothing like a cubit long, as they would be if 
the parting of the rope occurred, not by the breaking of the 
filaments, but by their slipping one over the other. 

SAGR. In confirmation of this i t  may be remarked that ropes 
sometimes break not by a lengthwise pull but by excessive 
twisting. This, it seems to me, is a conclusive argument because 
the threads bind one another so tightly that the compressing 
fibres do not permit those which are compressed to lengthen the 
spirals even that little bit by which it is necessary for them to 
lengthen in order to surround the rope which, on twisting, grows 
shorter and thicker. 

SALV. You are quite right. Now see how one fact suggests 
another 
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another. The thread held between the fingers does not yield 

to one who wishes to draw it away even when pulled with con- 
siderable force, but resists because it is held back by a double 
compression, seeing that the upper finger presses against the 
lower as hard as the lower against the upper. Now, if we could 
retain only one of these pressures there is no doubt that only 
half the original resistance would remain; but since we are 
not able, by lifting, say, the upper finger, to remove one of 
these pressures without also removing the other, it becomes 
necessary to preserve one of them by means of a new device 
which causes the thread to press itself against the finger or 
against some other solid body upon which it rests; and thus it is 
brought about that the very force which pulls 
i t  in order to snatch it away compresses i t  
more and more as the pull increases. This 
is accomplished by wrapping the thread 
around the solid in the manner of a spiral; 
and will be better understood by means of a 
figure. Let AB and CD be two cylinders be- 
tween which is stretched the thread EF: and 
for the sake of greater clearness we will im- 
agine it to be a small cord. If these two 
cylinders be pressed strongly together, the 
cord EF, when drawn by the end F, will un- 
doubtedly stand a considerable pull before it 
slips between the two compressing solids. 
But if we remove one of these cylinders the 
cord, though remaining in contadt with the 
other, will not thereby be prevented from 
slipping freely. On the other hand, if one 
holds the cord loosely against the top of the 
cylinder A, winds it in the spiral form AFLOTR, and then 
pulls it by the end R, it is evident that the cord will begin to 
bind the cylinder; the greater the number of spirals the more 
tightly will the cord be pressed against the cylinder by any 
given pull. Thus as the number of turns increases, the line of 

conta& 

[5 71 

Fig. 2 
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contact becomes longer and in consequence more resistant; so 
that the cord slips and yields to the trattive force with increas- 
ing difficulty. 

Cs81 
Is it not clear that this is precisely the kind of resistance which 

one meets in the case of a thick hemp rope where the fibres form 
thousands and thousands of similar spirals? And, indeed, the 
binding effett of these turns is so great that a few short rushes 
woven together into a few interlacing spirals form one of the 
strongest of ropes which I believe they call pack rope [surtu]. 

SAGR. What you say has cleared up two points which I did 
not previously understand. One fact is how two, or a t  most 
three, turns of a rope around the axle of a windlass cannot only 
hold it fast, but can also prevent it from slipping when pulled 
by the immense force of the weight lforza del peso] which it 
sustains; and moreover how, by turning the windlass, this same 
axle, by mere frittion of the rope around it, can wind up and 

lift huge stones while a mere boy is able to handle 
the slack of the rope. The other fa& has to do with 
a simple but clever device, invented by a young kins- 
man of mine, for the purpose of descending from a 
window by means of a rope without lacerating the 
palms of his hands, as had happened to him shortly 
before and greatly to his discomfort. A small sketch 
will make this clear. He took a wooden cylinder, 
AB, about as thick as a walking stick and about one 
span long: on this he cut a spiral channel of about 
one turn and a half, and large enough to just receive 
the rope which he wished to use. Having introduced 
the rope a t  the end A and led it out again a t  the end 
B, he enclosed both the cylinder and the rope in a 
case of wood or tin, hinged along the side so that it 
could be easily opened and closed. After he had 

fastened the rope to a firm support above, he could, on grasp- 
ing and squeezing the case with both hands, hang by his arms. 
The pressure on the rope, lying between the case and the cyl- 
inder, was such that he could, at will, either grasp the case 

more 

Fig. 3 
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more tightly and hold himself from slipping, or slacken his 
hold and descend as slowly as he wished. 

[s?I 
SALV. A truly ingenious device! I feel, however, that for 

a complete explanation other considerations might well enter; 
yet I must not now digress upon this particular topic since you 
are waiting to  hear what I think about the breaking strength of 
other materials which, unlike ropes and most woods, do not 
show a filamentous strunure. The coherence of these bodies 
is, in my estimation, produced by other causes which may be 
grouped under two heads. One is that  much-talked-of repug- 
nance which nature exhibits towards a vacuum; but this horror 
of a vacuum not being sufficient, it  is necessary to introduce 
another cause in the form of a gluey or viscous substance wl2,ch 
binds firmly together the component parts of the body. 

First I shall speak of the vacuum, demonstrating by definite 
experiment the quality and quantity of its force [viriii]. If you 
take two highly polished and smooth plates of marble, metal, or 
glass and place them face to  face, one will slide over the other 
with the greatest ease, showing conclusively that there is noth- 
ing of a viscous nature between them. But when you attempt 
to  separate them and keep them at a constant distance apart, 
you find the plates exhibit such a repugnance to  separation that 
the upper one will carry the lower one with it and keep it lifted 
indefinitely, even when the latter is big and heavy. 

This experiment shows the aversion of nature for empty 
space, even during the brief moment required for the outside air 
to rush in and fill up the region between the two plates. It is 
also observed that if two plates are not thoroughly polished, 
their contan is imperfeCt so that when you attempt to separate 
them slowly the only resistance offered is that of weight; if, 
however, the pull be sudden, then the lower plate rises, but 
quickly falls back, having followed the upper plate only for that 
very short interval of time required for the expansion of the 
small amount of air remaining between the plates, in conse- 
quence of their not fitting, and for the entrance of the surround- 
ing air. This resistance which is exhibited between the two 

plates 
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plates is doubtless likewise present between the parts of a solid, 
and enters, a t  least in part, as a concomitant cause of their 
coherence. 

[W 
SAGR. Allow me to interrupt you for a moment, please; for 

I want to speak of something which just occurs to me, namely, 
when I see how the lower plate follows the upper one and how 
rapidly it is lifted, I feel sure that, contrary to the opinion of 
many philosophers, including perhaps even Aristotle himself, 
motion in a vacuum is not instantaneous. If this were so the 
two plates mentioned above would separate without any re- 
sistance whatever, seeing that the same instant of time would 
suffice for their separation and for the surrounding medium to 
rush in and fill the vacuum between them. The fa& that the 
lower plate follows the upper one allows us to infer, not only 
that motion in a vacuum is not instantaneous, but also that, 
between the two plates, a vacuum really exists, at  least for a 
very short time, sufficient to allow the surrounding medium to 
rush in and fill the vacuum; for if there were no vacuum there 
would be no need of any motion in the medium. One must admit 
then that a vacuum is sometimes produced by violent motion 
[viol~nza] or contrary to the laws of nature, (although in my 
opinion nothing occurs contrary to nature except the impossible, 
and that never occurs). 

While experiment con- 
vinces me of the corre&ness of this conclusion, my mind is not 
entirely satisfied as to the cause to which this effe& is to be 
attributed. For the separation of the plates precedes the 
formation of the vacuum which is produced as a consequence 
of this separation; and since it appears to me that, in the order of 
nature, the cause must precede the effe&, even though it ap- 
pears to follow in point of time, and since every positive effe& 
must have a positive cause, I do not see how the adhesion of 
two plates and their resistance to separation-a&ual fa&-can 
be referred to a vacuum as cause when this vacuum is yet to 
follow. According to the infallible maxim of the Philosopher, 
the nonexistent can produce no effe&. 

But here another difficulty arises. 

simp. 
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SIMP. Seeing that you accept this axiom of Aristotle, I hardly 

think you will rejen another excellent and reliable maxim of his, 
namely, Nature undertakes only that which happens without 
resistance; and in this saying, it appears to me, you will find the 
solution of your difficulty. Since nature abhors a vacuum, she 
prevents that from which a vacuum would follow as a necessary 
consequence. Thus it happens that nature prevents the separa- 
tion of the two plates. 

1611 
SAGR. Now admitting that what Simplicio says is an adequate 

solution of my difficulty, it seems to me, if I may be allowed to 
resume my former argument, that this very resistance to a 
vacuum ought to be sufficient to hold together the parts either 
of stone or of metal or the parts of any other solid which is knit 
together more strongly and which is more resistant to separation. 
If for one effe& there be only one cause, or if, more being as- 
signed, they can be reduced to one, then why is not this vacuum 
which really exists a sufficient cause for all kinds of resistance? 

SALV. I do not wish just now to enter this discussion as to 
whether the vacuum alone is sufficient to hold together the 
separate parts of a solid body; but I assure you that the vacuum 
which a&s as a sufficient cause in the case of the two plates is not 
alone sufficient to bind together the parts of a solid cylinder of 
marble or metal which, when pulled violently, separates and 
divides. And now if I find a method of distinguishing this well 
known resistance, depending upon the vacuum, from every 
other kind which might increase the coherence, and if I show 
you that the aforesaid resistance alone is not nearly sufficient 
for such an effe&, will you not grant that we are bound to 
introduce another cause? Help him, Simplicio, since he does 
not know what reply to make. 

SIMP. Surely, Sagredo’s hesitation must be owing to another 
reason, for there can be no doubt concerning a conclusion which 
is at  once so clear and logical. 

SAGR. You have guessed rightly, Simplicio. I was wondering 
whether, if a million of gold each year from Spain were not 
sufficient to pay the army, it might not be necessary to 

make 
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make provision other than small coin for the pay of the 
soldiers.* 

But go ahead, Salviati; assume that I admit your conclusion 
and show us your method of separating the aaion of the vacuum 
from other causes; and by measuring it show us how it is not 
sufficient to produce the effeCt in question. 

I will tell you how to 
separate the force of the vacuum from the others, and after- 
wards how to measure it. For this purpose let us consider a 
continuous substance whose parts lack all resistance to separa- 
tion except that derived from a vacuum, such as is the case with 
water, a fact fully demonstrated by our Academician in one of his 
treatises. Whenever a cylinder of water is subjeaed to a pull and 

offers a resistance to the seDaration of its parts this can be attrib- 

SALV. Your good angel assist you. 

[621 - 
C 

by EGHF, and capable of up-and-down mo- 
tion. Through the middle of this cylinder is 
bored a hole to receive an iron wire, carrying 
a hook at  the end K, while the upper end 
of the wire, I, is provided with a conical 
head. The wooden cylinder is countersunk 

uted to Aoother cause (han the resistance of the 
vacuum. In order to try such an experiment 
I have invented a device which I can better 
explain by means of a sketch than by mere 
words. Let CABD represent the cross section 
of a cylinder either of metal or, preferably, 
of glass, hollow inside and accurately turned. 
Into this is introduced a perfeatly fitting 

D cylinder of wood, represented in cross section 

Fig. 4 a t  the top so as to receive, with a perfeCt 
fit, the conical head I of the wire, IK, when pulled down by 
the end K. 

Now insert the wooden cylinder EH in the hollow cylinder AD, 
so as not to touch the upper end of the latter but to leave free a 
space of two or three finger-breadths; this space is to be filled 

* The bearing of this remark becomes clear on reading what Salviati 
says on p. 18 below. [Trans.] 
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with water by holding the vessel with the mouth CD upwards, 
pushing down on the stopper EH, and a t  the same time keeping 
the conical head of the wire, I, away from the hollow portion of 
the wooden cylinder. The air is thus allowed to escape alongside 
the iron wire (which does not make a close fit) as soon as one 
presses down on the wooden stopper. The air having been 
allowed to escape and the iron wire having been drawn back so 
that it fits snugly against the conical depression in the wood, 
invert the vessel, bringing it mouth downwards, and hang on the 
hook K a vessel which can be filled with sand or any heavy 
material in quantity sufficient to finally separate the upper 
surface of the stopper, EF, from the lower surface of the water 
to which it was attached only by the resistance of the vacuum. 
Next weigh the stopper and wire together with the attached 
vessel and its contents; we shall then have the force of the 
vacuum worm del vucuo]. If one attaches to a cylinder of marble 

or glass a weight which, together with the weight of the marble 
or glass itself, is just equal to the sum of the weights before 
mentioned, and if breaking occurs we shall then be justified in 
saying that the vacuum alone holds the parts of the marble and 
glass together; but if this weight does not suffice and if breaking 
occurs only after adding, say, four times this weight, we shall 
then be compelled to say that the vacuum furnishes only one 
fifth of the total resistance [rcsistenm]. 
SIMP. No one can doubt the cleverness of the device; yet i t  

presents many difficulties which make me doubt its reliability. 
For who will assure us that the air does not creep in between the 
glass and stopper even if it is well packed with tow or other 
yielding material? I question also whether oiling with wax or 
turpentine will suffice to make the cone, I, fit snugly on its seat. 
Besides, may not the parts of the water expand and dilate? 
Why may not the air or exhalations or some other more subtile 
substances penetrate the pores of the wood, or even of the glass 
itself? 

SALV. With great skill indeed has Simplicio laid before us the 
difficulties; and he has even partly suggested how to prevent the 

air 
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air from penetrating the wood or passing between the wood and 
the glass. But now let me point out that, as our experience in- 
creases, we shall learn whether or not these alleged difficulties 
really exist. For if, as is the case with air, water is by nature 
expansible, although only under severe treatment, we shall see 
the stopper descend; and if we put a small excavation in the 
upper part of the glass vessel, such as indicated by V, then the 
air or any other tenuous and gaseous substance, which might 
penetrate the pores of glass or wood, would pass through the 
water and colleh in this receptacle V. But if these things do not 
happen we may rest assured that our experiment has been per- 
formed with proper caution; and we shall discover that water 
does not dilate and that glass does not allow any material, 
however tenuous, to penetrate it. 

SAGR. Thanks to this discussion, I have learned the cause of a 
certain effeh which I have long wondered at  and despaired of 
understanding. I once saw a cistern which had been provided 
with a pump under the mistaken impression that the water 
might thus be drawn with less effort or in greater quantity than 
by means of the ordinary bucket. The stock of the pump car- 

ried its sucker and valve in the upper part so that the water was 
lifted by attraRion and not by a push as is the case with pumps 
in which the sucker is placed lower down. This pump worked 
perfehly so long as the water in the cistern stood above a certain 
level; but below this level the pump failed to work. When I 
first noticed this phenomenon I thought the machine was out of 
order; but the workman whom I called in to repair it told me 
the defeCt was not in the pump but in the water which had 
fallen too low to be raised through such a height; and he added 
that it was not possible, either by a pump or by any other 
machine working on the principle of attrahion, to lift water a 
hair’s breadth above eighteen cubits; whether the pump be 
large or small this is the extreme limit of the lift. Up to this 
time I had been so thoughtless that, although I knew a rope, or 
rod of wood, or of iron, if sufficiently long, would break by its 
own weight when held by the upper end, it never occurred to me 

that 
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that the same thing would happen, only much more easily, to a 
column of water. And really is not that thing which is at- 
traRed in the pump a column of water attached a t  the upper 
end and stretched more and more until finally a point is reached 
where it breaks, like a rope, on account of its excessive weight? 

SALV. That is precisely the way it works; this fixed elevation 
of eighteen cubits is true for any quantity of water whatever, be 
the pump large or small or even as fine as a straw. We may 
therefore say that, on weighing the water contained in a tube 
eighteen cubits long, no matter what the diameter, we shall 
obtain the value of the resistance of the vacuum in a cylinder of 
any solid material having a bore of this same diameter. And 
having gone so far, let us see how easy it  is to find to what 
length cylinders of metal, stone, wood, glass, etc., of any diam- 
eter can be elongated without breaking by their own weight. 

Take for instance a copper wire of any length and thickness; 
fix the upper end and to the other end attach a greater and 
greater load until finally the wire breaks; let the maximum load 
be, say, fifty pounds. Then it is clear that if fifty pounds of 
copper, in addition to the weight of the wire itself which may 
be, say, ounce, is drawn out into wire of this same size we 
shall have the greatest length of this kind of wire which can sus- 
tain its own weight. Suppose the wire which breaks to be one 
cubit in length and ounce in weight; then since it supports 
50 lbs. in addition to its own weight, i. e., 4800 eighths-of-an- 
ounce, it follows that all copper wires, independent of size, can 
sustain themselves up to a length of 4801 cubits and no more. 
Since then a copper rod can sustain its own weight up to a 
length of 4801 cubits it follows that that part of the breaking 
strength [resistenza] which depends upon the vacuum, comparing 
it with the remaining fa&ors of resistance, is equal to the weight 
of a rod of water, eighteen cubits long and as thick as the copper 
rod. If, for example, copper is nine times as heavy as water, the 
breaking strength [resistenzu a220 strapparsal of any copper rod, 
in so far as it depends upon the vacuum, is equal to the weight 
of two cubits of this same rod. By a similar method one can 

find 
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find the maximum length of wire or rod of any material which 
will just sustain its own weight, and can a t  the same time dis- 
cover the part which the vacuum plays in its breaking strength. 

SAGR. It still remains for you to tell us upon what depends 
the resistance to breaking, other than that of the vacuum; what 
is the gluey or viscous substance which cements together the 
parts of the solid? For I cannot imagine a glue that will not 
burn up in a highly heated furnace in two or three months, or 
certainly within ten or a hundred. For if gold, silver and glass 
are kept for a long while in the molten state and are removed 
from the furnace, their parts, on cooling, immediately reunite 
and bind themselves together as before. Not only so, but 
whatever difficulty arises with respe& to the cementation of the 
parts of the glass arises also with regard to the parts of the glue; 
in other words, what is that which holds these parts together so 
firmly? 

1661 
SALV. A little while ago, I expressed the hope that your good 

angel might assist you. I now find myself in the same straits. 
Experiment leaves no doubt that the reason why two plates 
cannot be separated, except with violent effort, is that they are 
held together by the resistance of the vacuum; and the same 
can be said of two large pieces of a marble or bronze column. 
This being so, I do not see why this same cause may not explain 
the coherence of smaller parts and indeed of the very smallest 
particles of these materials. Now, since each effe& must have 
one true and sufficient cause and since I find no other cement, am 
I not justified in trying to discover whether the vacuum is not a 
sufficient cause? 

SIMP. But seeing that you have already proved that the re- 
sistance which the large vacuum offers to the separation of 
two large parts of a solid is really very small in comparison with 
that cohesive force which binds together the most minute parts, 
why do you hesitate to regard this latter as something very 
different from the former? 

SALV. Sagredo has already [p. 13 above] answered this ques- 
tion when he remarked that each individual soldier was being 

paid 
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paid from coin colle&ed by a genera1 tax of pennies and farth- 
ings, while even a million of gold would not suffice to pay the 
entire army. And who knows but that there may be other 
extremely minute vacua which affekt the smallest particles so 
that that which binds together the contiguous parts is through- 
out of the same mintage? Let me tell you something which has 
just occurred to me and which I do not offer as an absolute fa&, 
but rather as a passing thought, still immature and calling for 
more careful consideration. You may take of i t  what you like; 
and judge the rest as you see fit. Sometimes when I have ob- 
served how fire winds its way in between the most minute 
particles of this or that metal and, even though these are solidly 
cemented together, tears them apart and separates them, and 
when I have observed that, on removing the fire, these particles 
reunite with the same tenacity as at  first, without any loss of 
quantity in the case of gold and with little loss in the case of 
other metals, even though these parts have been separated for a 
long while, I have thought that the explanation might lie in the 
fact that the extremely fine part'icles of fire, penetrating the 
slender pores of the metal (too small to admit even the finest 
particles of air or of many other fluids), would fill the small 
intervening vacua and would set free these small particles from 
the attrattion which these same vacua exert upon them and 
which prevents their separation. Thus the particles are able to 

move freely so that the mass [mussu] becomes fluid and remains 
so as long as the particles of fire remain inside; but if they depart 
and leave the former vacua then the original attraction [uttruz- 
zione] returns and the parts are again cemented together. 

In reply to the question raised by Simplicio, one may say that 
although each particular vacuum is exceedingly minute and 
therefore easily overcome, yet their number is so extraordinarily 
great that their combined resistance is, so to speak, multipled 
almost without limit. The nature and the amount of force 
Vorm] which results [risulta] from adding together an immense 
number of small forces [debolissimi momentz] is clearly illus- 
trated by the fa& that a weight of millions of pounds, suspended 

by 
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by great cables, is overcome and lifted, when the south wind 
carries innumerable atoms of water, suspended in thin mist, 
which moving through the air penetrate between the fibres of the 
tense ropes in spite of the tremendous force of the hanging 
weight. When these particles enter the narrow pores they 
swell the ropes, thereby shorten them, and perforce lift the 
heavy mass [mole]. 

SAGR. There can be no doubt that any resistance, so long as 
it is not infinite, may be overcome by a multitude of minute 
forces. Thus a vast number of ants might carry ashore a ship 
laden with grain. And since experience shows us daily that 
one ant can easily carry one grain, it is clear that the number of 
rains in the ship is not infinite, but falls below a certain limit. 

f f  you take another number four or six times as great, and if 
you set to work a corresponding number of ants they will carry 
the grain ashore and the boat also. It is true that this will call 
for a prodigious number of ants, but in my opinion this is pre- 
cisely the case with the vacua which bind together the least 
particles of a metal. 

SALV. But even if this demanded an infinite number would 
you still think it impossible? 

SAGR. Not if the mass [mole] of metal were infinite; other- 
wise. . . . 

1681 
SALV. Otherwise what? Now since we have arrived at  

paradoxes let us see if we cannot prove that within a finite ex- 
tent it is possible to discover an infinite number of vacua. At the 
same time we shall at  least reach a solution of the most remark- 
able of all that list of problems which Aristotle himself calls 
wonderful; I refer to his Qaesstions in Mechanics. This solution 
may be no less clear and conclusive than that which he himself 
gives and quite different also from that so cleverly expounded by 
the most learned Monsignor di Guevara.* 

First it is necessary to consider a proposition, not treated by 
others, but upon which depends the solution of the problem and 
from which, if I mistake not, we shall derive other new and 
remarkable facts. For the sake of clearness let us draw an 

* Bishop of Teano; b. 1561, d.164~. [Trans.] 
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accurate figure. About G as a center describe an equiangular 
and equilateral polygon of any number of sides, say the hexagon 
ABCDEF. Similar to this and concentric with it, describe 
another smaller one which we shall call HIKLMN. Prolong the 

V 
.......... ~ .~ . . . . , .. .. . . . ,, _,.*.. .... 

T 
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S 
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Fig. 5 

side AB, of the larger hexagon, indefinitely toward S; in like 
manner prolong the corresponding side HI of the smaller hex- 
agon, in the same diredtion, so that the line €IT is parallel to 
AS; and through the center draw the line GV parallel to the 
other two. This done, imagine the larger polygon to roll upon 

the line AS, carrying with it the smaller polygon. It is evident 
that, if the point B, the end of the side AB, remains fixed a t  the 
beginning of the rotation, the point A will rise and the point C 
will fall describing the arc CQ until the side BC coincides with 
the line BQ, equal to BC. But during this rotation the point I, 
on the smaller polygon, will rise above the line IT because IB is 
oblique to AS; and it will not again return to the line IT until the 
point C shall have reached the position Q. The point I, having 
described the arc IO above the line HT, will reach the position 

0 a t  
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0 at the same time the side IK assumes the position OP; but in 
the meantime the center G has traversed a path above GV and 
does not return to it until it has completed the arc GC. This 
step having been taken, the larger polygon has been brought to 
rest with its side BC coinciding with the line BQ while the side 
IK of the smaller polygon has been made to coincide with the 
line OP, having passed over the portion IO without touching it; 
also the center G will have reached the position C after having 
traversed all its course above the parallel line GV. And finally 
the entire figure will assume a position similar to the first, so 
that if we continue the rotation and come to the next step, the 
side DC of the larger polygon will coincide with the portion QX 
and the side KL of the smaller polygon, having first skipped the 
arc PY, will fall on YZ, while the center still keeping above the 
line GV will return to it a t  R after having jumped the interval 
CR. At the end of one complete rotation the larger polygon will 
have traced upon the line AS, without break, six lines together 
equal to its perimeter; the lesser polygon will likewise have 
imprinted six lines equal to its perimeter, but separated by the 
interposition of five arcs, whose chords represent the parts 
of HT not touched by the polygon: the center G never reaches 
the line GV except at  six points. From this it is clear that the 
space traversed by the smaller polygon is almost equal to that 
traversed by the larger, that is, the line HT approximates the 
line AS, differing from it only by the length of one chord of one 
of these arcs, provided we understand the line HT to include the 
five skipped arcs. 

Now this exposition which I have given in the case of these 
hexagons must be understood to be applicable to all other 
polygons, whatever the number of sides, provided only they are 

similar, concentric, and rigidly connetled, so that when the 
greater one rotates the lesser will also turn however small it may 
be. You must also understand that the lines described by these 
two are nearly equal provided we include in the space traversed 
by the smaller one the intervals which are not touched by any 
part of the perimeter of this smaller polygon. 

Let 

bo1 
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Let a large polygon of, say, one thousand sides make m e  

complete rotation and thus lay off a line equal to its perimeter; 
at the same time the small one will pass over an approximately 
equal distance, made up of a thousand small portions each 
equal to one of its sides, but interrupted by a thousand spaces 
which, in contrast with the portions that coincide with the sides 
of the polygon, we may call empty. So far the matter is free 
from difficulty or doubt. 

But now suppose that about any center, say A, we describe 
two concentric and rigidly connedled circles; and suppose that 
from the points C and B, on their radii, there are drawn the 
tangents CE and BF and that through the center A the line A D  
is drawn parallel to them, then if the large circle makes one 
complete rotation along the line BF, equal not only to its cir- 
cumference but also to the other two lines CE and AD, tell me 
what the smaller circle will do and also what the center will do. 
As to the center it will certainly traverse and touch the entire 
line A D  while the circumference of the smaller circle will have 
measured off by its points of contad3 the entire line CE, just as 
was done by the above mentioned polygons. The only difference 
is that the line HT was not at every point in contad3 with the 
perimeter of the smaller polygon, but there were left untouched 
as many vacant spaces as there were spaces coinciding with the 
sides. But here in the case of the circles the circumference of the 
smaller one never leaves the line CE, so that no part of the latter 
is left untouched, nor is there ever a time when some point on the 
circle is not in contadl with the straight line. How now can the 
smaller circle traverse a length greater than its circumference 
unless it go by jumps? 
SAGR. It seems to me that one may say that just as the center 

of the circle, by itself, carried along the line AD is constantly in 
contaA with it, although it is only a single point, so the points on 
the circumference of the smaller circle, carried along by the 
motion of the larger circle, would slide over some small parts of 
the line CE. 

SALV. There are two reasons why this cannot happen. First 
because 

[PI 
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because there is no ground for thinking that one point of con- 
ta&, such as that a t  C, rather than another, should slip over 
certain portions of the line CE. But if such slidings along CE 
did occur they would be infinite in number since the points of 
conta& (being mere points) are infinite in number: an infinite 
number of finite slips will however make an infinitely long line, 
while as a matter of fa& the line CE is finite. The other reason 
is that as the greater circle, in its rotation, changes its point of 
conta& continuously the lesser circle must do the same because 
B is theonly point from which a straight line can be drawn to A 
and pass through C. Accordingly the small circle must change 
its point of conta& whenever the large one changes : no point of 
the small circle touches the straight line CE in more than one 
point. Not only so, but even in the rotation of the polygons 
there was no point on the perimeter of the smaller which coin- 
cided with more than one point on the line traversed by that 
perimeter; this is a t  once clear when you remember that the 
line IK is parallel to BC and that therefore IK will remain above 
IP until BC coincides with BQ, and that IK will not lie upon IP 
except a t  the very instant when BC occupies the position BQ; a t  
this instant the entire line IK coincides with OP and immediately 
afterwards rises above it. 

SAGR. This is a very intricate matter. I see no solution. Pray 
explain it to us. 

SALV. Let us return to the consideration of the above men- 
tioned polygons whose behavior we already understand. Now 
in the case of polygons with IOOOOO sides, the line traversed by 
the perimeter of the greater, i. e., the line laid down by its 
IOOOOO sides one after another, is equal to the line traced out by 
the IOOOOO sides of the smaller, provided we include the IOOOOO 
vacant spaces interspersed. So in the case of the circles, poly- 
gons having an infinitude of sides, the line traversed by the 
continuously distributed [continuamente dispostzl infinitude of 
sides is in the greater circle equal to the line laid down by the 
infinitude of sides in the smaller circle but with the exception 
that these latter alternate with empty spaces; and since the 
sides are not finite in number, but infinite, so also are the inter- 

vening 
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vening empty spaces not finite but infinite. The line traversed 
by the larger circle consists then of an infinite number of points 
which completely fill it; while that which is traced by the smaller 
circle consists of an infinite number of mints which leave empty 
spaces and only partly fill the line. And here I wish you to 
observe that after dividing and resolving a line into a finite 
number of parts, that is, into a number which can be counted, it 

is not possible to arrange them again into a greater length than 
that which they occupied when they formed a continuum [con- 
tinuate] and were connedled without the interposition of as 
many empty spaces. But if we consider the line resolved into 
an infinite number of infinitely small and indivisible parts, we 
shall be able to conceive the line extended indefinitely by the 
interposition, not of a finite, but of an infinite number of in- 
finitely small indivisible empty spaces. 

Now this which has been said concerning simple lines must be 
understood to hold also in the case of surfaces and solid bodies, 
it  being assumed that they are made up of an infinite, not a 
finite, number of atoms. Such a body once divided into a 
finite number of parts it is impossible to reassemble them so as to 
occupy more space than before unless we interpose a finite 
number of empty spaces, that is to say, spaces free from the 
substance of which the solid is made. But if we imagine the 
body, by some extreme and final analysis, resolved into its 
primary elements, infinite in number, then we shall be able to 
think of them as indefinitely extended in space, not by the 
interposition of a finite, but of an infinite number of empty 
spaces. Thus one can easily imagine a small ball of gold ex- 
panded into a very large space without the introdudtion of a 
finite number of empty spaces, always provided the gold is 
made up of an infinite number of indivisible parts. 

SIMP. It seems to me that you are travelling along toward 
those vacua advocated by a certain ancient philosopher. 
SALV. But you have failed to add, “who denied Divine Provi- 

dence,” an inapt remark made on a similar occasion by a cer- 
tain antagonist of our Academician. 

1721 
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SIMP. I noticed, and not without indignation, the rancor of 

this ill-natured opponent; further references to these affairs I 
omit, not only as a matter of good form, but also because I 
know how unpleasant they are to the good tempered and well 
ordered mind of one so religious and pious, so orthodox and 
God-fearing as you. 

But to return to our subject, your previous discourse leaves 
with me many difficulties which I am unable to solve. First 
among these is that, if the circumferences of the two circles are 
equal to the two straight lines, CE and BF, the latter con- 
sidered as a continuum, the former as interrupted with an in- 
finity of empty points, I donot see how it is possible to say that 
the line AD described by the center, and made up of an infinity 
of points, is equal to this center which is a single point. Besides, 
this building up of lines out of points, divisibles out of indivisi- 
bles, and finites out of infinites, offers me an obstacle difficult to 
avoid; and the necessity of introducing a vacuum, so conclu- 
sively refuted by Aristotle, presents the same difficulty. 

[73 1 
SALV. These difficulties are real; and they are not the only 

ones. But let us remember that we are dealing with infinities 
and indivisibles, both of which transcend our finite under- 
standing, the former on account of their magnitude, the latter 
because of their smallness. In spite of this, men cannot refrain 
from discussing them, even though it must be done in a round- 
about way. 

Therefore I also should like to take the liberty to present some 
of my ideas which, though not necessarily convincing, would, 
on account of their novelty, a t  least, prove somewhat startling. 
But such a diversion might perhaps carry us too far away from 
the subject under discussion and might therefore appear to you 
inopportune and not very pleasing. 

SAGR. Pray let us enjoy the advantages and privileges which 
come from conversation between friends, especially upon sub- 
jects freely chosen and not forced upon us, a matter vastly 
different from dealing with dead books which give rise to many 
doubts but remove none. Share with us, therefore, the thoughts 

which 
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which our discussion has suggested to you; for since we are free 
from urgent business there will be abundant time to pursue the 
topics already mentioned; and in particular the obje&ions 
raised by Simplicio ought not in any wise to be negledted. 

SALV. Granted, since you so desire. The first question was, 
How can a single point be equal to a line? Since I cannot do 
more a t  present I shall attempt to remove, or at  least diminish, 
one improbability by introducing a similar or a greater one, 
just as sometimes a wonder is diminished by a miracle.* 

And this I shall do by showing you two equal surfaces, to- 
gether with two equal solids located upon these same surfaces 
as bases, all four of which diminish continuously and uniformly 
in such a way that their remainders always preserve equality 
among themselves, and finally both the surfaces and the solids 
terminate their previous constant equality by degenerating, the 
one solid and the one surface into a very long line, the other 
solid and the other surface into a single point; that is, the 
latter to one point, the former to an infinite number of points. 

[741 
SAGR. This proposition appears to me wonderful, indeed; 

but let us hear the explanation and demonstration. 
SAW. Since the proof is purely geometrical we shall need 

a figure. Let AFB be a semicircle with center a t  C; about it 
describe the rettangle ADEB and from the center draw the 
straight lines CD and CE to the points D and E. Imagine the 
radius CF to be drawn perpendicular to either of the lines AB or 
DE, and the entire figure to rotate about this radius as an axis. 
It is clear that the redtangle ADEB will thus describe a cylinder, 
the semicircle AFB a hemisphere, and the triangle CDE, a cone. 
Next let us reniove the hemisphere but leave the cone and the 
rest of the cylinder, which, on account of its shape, we will call a 
“bowl.” First we shall prove that the bowl and the cone are 
equal; then we shall show that aplanedrawn parallel tothe circle 
which forms the base of the bowl and which has the line DE for 
diameter and F for a center-a plane whose trace is GN-cu t s  
the bowl in the points G, I, 0, N, and the cone in the points H, L, 
so that the part of the cone indicated by CHL is always equal to 

* Cf. p. 30 below. [Tmnr.] 
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the part of the bowl whose profile is represented by the triangles 
GAI and BON. Besides this we shall prove that the base of the 
cone, i. e., the circle whose diameter is HL, is equal to the circular 

B surface which forms the base of 
this portion of the bowl, or as 
one might say, equal to a ribbon 

Nwhose width is GI. (Note by 
the way the nature of mathe- 
matical definitions which con- 
sist merely in the imposition of 

D F E names or, if you prefer, abbrevi- 
ations of speech established and 

introduced in order to avoid the tedious drudgery which you 
and I now experience simply because we have not agreed 
to call this surface a “circular band” and that sharp solid 
portion of the bowl a “round razor.”) Now call them by 

[751 
what name you please, it  suffices to understand that the plane, 
drawn at any height whatever, so long as it is parallel to 
the base, i. e., to the circle whose diameter is DE, always cuts 
the two solids so that the portion CHL of the cone is equal to the 
upper portion of the bowl; likewise the two areas which are the 
bases of these solids, namely the band and the circle HL, are also 
equal. Here we have the miracle mentioned above; as the cut- 
ting plane approaches the line AB the portions of the solids cut 
off are always equal, so also the areas of their bases. And as the 
cutting plane comes near the top, the two solids (always equal) 
as well as their bases (areas which are also equal) finally vanish, 
one pair of them degenerating into the circumference of a circle, 
the other into a single point, namely, the upper edge of the bowl 
and the apex of the cone. Now, since as these solids diminish 
equality is maintained between them up to the very last, we are 
justified in saying that, a t  the extreme and final end of this 
diminution, they are still equal and that one is not infinitely 
greater than the other. It appears therefore that we may 
equate the circumference of a large circle to a single point. And 
this which is true of the solids is true also of the surfaces which 

form 
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form their bases; for these also preserve equality between them- 
selves throughout their diminution and in the end vanish, the 
one into the circumference of a circle, the other into a single 
point. Shall we not then call them equal seeing that they are the 
last traces and remnants of equal magnitudes? Note also that, 
even if these vessels were large enough to contain immense 
celestial hemispheres, both their upper edges and the apexes of 
the cones therein contained would always remain equal and 
would vanish, the former into circles having the dimensions of 
the largest celestial orbits, the latter into single points. Hence 
in conformity with the preceding we may say that all circum- 
ferences of circles, however different, are equal to each other, 
and are each equal to a single point. 
SAGR. This presentation strikes me as so clever and novel 

that, even if I were able, I would not be willing to oppose it; 
for to deface so beautiful a strudure by a blunt pedantic attack 
would be nothing short of sinful. But for our complete satisfac- 

tion pray give us this geometrical proof that there is always 
equality between these solids and between their bases; for it 
cannot, I think, fail to be very ingenious, seeing how subtle is 
the philosophical argument based upon this result. 

SALV. The demonstration is both short and easy. Refemng 
to the preceding figure, since IPC is a right angle the square of 
the radius IC is equal to the sum of the squares on the two sides 
IP, PC; but the radius IC is equal to AC and also to GP, while 
CP is equal to PH. Hence the square of the line GP is equal to 
the sum of the squares of IP and PH, or multiplying through by 
4, we have the square of the diameter GN equal to the sum of the 
squares on IO and HL. And, since the areas of circles are to 
each other as the squares of their diameters, it follows that the 
area of the circle whose di.ameter is GN is equal to the sum of the 
areas of circles having diameters 10 and HL, so that if we remove 
the common area of the circle having IO for diameter the re- 
maining area of the circle GN will be equal to the area of the 
circle whose diameter is HL. So much for the first part. As for 
the other part, we leave its demonstration for the present, partly 

because 
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because those who wish to follow it will find it in the twelfth 
proposition of the second book of De centro gruviiatis solidorum 
by the Archimedes of our age, Luca Valerie,* who made use of it 
for a different obje&, and partly because, for our purpose, it 
suffices to have seen that the above-mentioned surfaces are 
always equal and that, as they keep on diminishing uniformly, 
they degenerate, the one into a single point, the other into the 
circumference of a circle larger than any assignable; in this fa& 
lies our mirac1e.t 

SAGR. The demonstration is ingenious and the inferences 
drawn from it are remarkable. And now let us hear something 
concerning the other difficulty raised by Simplicio, if you have 
anything special to say, which, however, seems to me hardly 
possible, since the matter has already been so thoroughly dis- 
cussed. 

SALV. But I do have something special to say, and will first 
of all repeat what I said a little while ago, namely, that in- 
finity and indivisibility are in their very nature incomprehensi- 
ble to us; imagine then what they are when combined. Yet if 

[771 
we wish to build up a line out of indivisible points, we must 
take an infinite number of them, and are, therefore, bound to 
understand both the infinite and the indivisible a t  the same 
time. Many ideas have passed through my mind concerning this 
subje&, some of which, possibly the more important, I may not 
be able to recall on the spur of the moment; but in the course 
of our discussion it may happen that I shall awaken in you, and 
especially in Simplicio, obje&ions and difficulties which in 
turn will bring to memory that which, without such stimulus, 
would have lain dormant in my mind. Allow me therefore the 
customary liberty of introducing some of our human fancies, for 
indeed we may so call them in comparison with supernatural 
truth which furnishes the one true and safe recourse for deci- 
sion in our discussions and which is an infallible guide in the 
dark and dubious paths of thought. 

* Distinguished Italian mathematician; born at Ferrara about 1552; 
admitted to the Accademia dei Lincei 1612; died 1618. [Tram.] 

t Cf. p. 27 above. [ Truns.] 
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One of the main objedtions urged against this building up 

of continuous quantities out of indivisible quantities [continuo 
d’ indivisibdij is that the addition of one indivisible to an- 
other cannot produce a divisible, for if this were so it would 
render the indivisible divisible. Thus if two indivisibles, say 
two points, can be united to form a quantity, say a divisible 
line, then an even more divisible line might be formed by the 
union of three, five, seven, or any other odd number of points. 
Since however these lines can be cut into two equal parts, it 
becomes possible to cut the indivisible which lies exadtly in the 
middle of the line. In answer to this and other objedtions of the 
same type we reply that a divisible magnitude cannot be con- 
strudted out of two or ten or a hundred or a thousand indivisibles, 
but requires an infinite number of them. 
SIMP. Here a difficulty presents itself which appears to me 

insoluble. Since it is clear that we may have one line greater 
than another, each containing an infinite number of points, 
we are forced to admit that, within one and the same class, 
we may have something greater than infinity, because the in- 
finity of points in the long line is greater than the infinity of 
points in the short line. This assigning to an infinite quantity 
a value greater than infinity is quite beyond my comprehension. 

SALV. This is one of the difficulties which arise when we 
attempt, with our finite minds, to discuss the infinite, assigning 
to it those properties which we give to the finite and limited; but 

this I think is wrong, for we cannot speak of infinite quantities 
as being the one greater or less than or equal to another. To 
prove this I have in mind an argument which, for the sake of 
clearness, I shall put in the form of questions to Simplicio who 
raised this difficulty. 

I take it for granted that you know which of the numbers are 
squares and which are not. 

SIMP. I am quite aware that a squared number is one which re- 
sults from the multiplication of another number by itself; thus 
4,9, etc., are squared numbers which come from multiplying 2,3, 
etc . , by themselves. 

Salv. 
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SALV. Very well; and you also know that just as the produ&s 

are called squares so the fadtors are called sides or roots; while 
on the other hand those numbers which do not consist of two 
equal fa&ors are not squares. Therefore if I assert that all 
numbers, including both squares and non-squares, are more 
than the squares alone, I shall speak the truth, shall I not? 

SIMP. Most certainly. 
SALV. If I should ask further how many squares there are one 

might reply truly that there are as many as the corresponding 
number of roots, since every square has its own root and every 
root its own square, while no square has more than one root 
and no root more than one square. 

SIMP. Precisely so. 
SALV. But if I inquire how many roots there are, it cannot 

be denied that there are as many as there are numbers because 
every number is a root of some square. This being granted 
we must say that there are as many squares as there are num- 
bers because they are just as numerous as their roots, and all 
the numbers are roots. Yet a t  the outset we said there are 
many more numbers than squares, since the larger portion of 
them are not squares. Not only so, but the proportionate 
number of squares diminishes as we pass to larger numbers. 
Thus up to 1 0 0  we have IO squares, that is, the squares constitute 
1 / 1 0  part of all the numbers; up to 1oo00, we find only I / I ~  

part to be squares; and up to a million only I/IOOO part; on the 
other hand in an infinite number, if one could conceive of such a 
thing, he would be forced to admit that there are as many 
squares as there are numbers all taken together. 

SAGR. What then must one conclude under these circum- 
stances? 

SALV. So far as I see we can only infer that the totality of 
all numbers is infinite, that the number of squares is infinite, 
and that the number of their roots is infinite; neither is the 
number of squares less than the totality of all numbers, nor 
the latter greater than the former; and finally the attributes 
CC equal,” “greater,” and “less,” are not applicable to infinite, 

but 
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but only to finite, quantities. When therefore Simplicio in- 
troduces several lines of different lengths and asks me how it 
is possible that the longer ones do not cmtain more points 
than the shorter, I answer him that one line does not contain 
more or less or just as many points a$ another, but that each 
line contains an infinite number. Or if I had replied to him 
that the points in one line were equal in number to the squares; 
in another, greater than the totality of numbers; and in the little 
one, as many as the number of cubes, might I not, indeed, have 
satisfied him by thus placing more points in one line than in 
another and yet maintaining an infinite number in each? So 
much for the first difficulty. 

SAGR. Pray stop a moment and let me add to what has al- 
ready been said an idea which just occurs to me. If the pre- 
ceding be true, it seems to me impossible to say either that one 
infinite number is greater than another or even that it is greater 
than a finite number, because if the infinite number were greater 
than, say, a million it would follow that on passing from the 
million to higher and higher numbers we would be approach- 
ing the infinite; but this is not so; on the contrary, the lar- 
ger the number to which we pass, the more we recede from 
[this property of] infinity, because the greater the numbers the 
fewer [relatively] are the squares contained in them; but the 
squares in infinity cannot be less than the totality of all the 
numbers, as we have just agreed; hence the approach to greater 
and greater numbers means a departure from infinity.* 

SALV. And thus from your ingenious argument we are led to 

conclude that the attributes “larger,” “smaller,” and “equal ” 
have no place either in comparing infinite quantities with each 
other or in comparing infinite with finite quantities. 

Since lines and all 
continuous quantities are divisible into parts which are them- 
selves divisible without end, I do not see how it is possible 

* A certain confusion of thought appears to be introduced here through 
a failure to distinguish between the  number n and the class of the first n 
numbers; and likewise from a failure to distinguish infinity as a number 
from infinity as the class of all numbers. [Trans.] 

Bo1 
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to avoid the conclusion that these lines are built up of an in- 
finite number of indivisible quantities because a division and a 
subdivision which can be carried on indefinitely presupposes 
that the parts are infinite in number, otherwise the subdivision 
would reach an end; and if the parts are infinite in number, we 
must conclude that they are not finite in size, because an in- 
finite number of finite quantities would give an infinite magni- 
tude. And thus we have a continuous quantity built up of an 
infinite number of indivisibles. 

SIMP. But if we can carry on indefinitely the division into 
finite parts what necessity is there then for the introduction 
of non-finite parts? 

SALV. The very fa& that one is able to continue, without 
end, the division into finite parts [in parti quante] makes it nec- 
essary to regard the quantity as composed of an infinite num- 
ber of immeasurably small elements [di infiniti non quantzl. 
Now in order to settle this matter I shall ask you to tell me 
whether, in your opinion, a continuum is made up of a finite 
or of an infinite number of finite parts [parti quante]. 

SIMP. M y  answer is that their number is both infinite and 
finite; potentially infinite but a&ually finite [infinite, in po- 
tenzu; e finite, in atto]; that is to say, potentially infinite before 
division and a&ually finite after division; because parts cannot 
be said to exist in a body which is not yet divided or a t  least 
marked out; if this is not done we say that they exist potentially. 

SALV. So that a line which is, for instance, twenty spans 
long is not said to contain attually twenty lines each one span 
in length except after division into twenty equal parts; before 
division it is said to contain them only potentially. Suppose 
the fa& are as you say; tell me then whether, when the division 
is once made, the size of the original quantity is thereby in- 
creased, diminished, or unaffetted. 

SIMP. It neither increases nor diminishes. 
SALV. That is my opinion also. Therefore the finite parts 

[parti quante] in a continuum, whether a&ually or potentially 
present, do not make the quantity either larger or smaller; but 
it is perfedtly clear that, if the number of finite parts a&ually 

contained 
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contained in the whole is infinite in number, they will make the 
magnitude infinite. Hence the number of finite parts, although 
existing only potentially, cannot be infinite unless the magnitude 
containing them be infinite; and conversely if the magnitude is 

finite it cannot contain an infinite number of finite parts either 
a&ually or potentially. 

SAGR. How then is i t  possible to divide a continuum without 
limit into parts which are themselves aIways capable of subdivi- 
sion? 

SALV. This distinCtion of yours between aAual and potential 
appears to render easy by one method what would be impossible 
by another. But I shall endeavor to reconcile these matters 
in another way; and as to the query whether the finite parts 
of a limited continuum [continuo terminato] are finite or in- 
finite in number I will, contrary to the opinion of Simplicio, 
answer that they are neither finite nor infinite. 

SIMP. This answer would never have occurred to me since I 
did not think that there existed any intermediate step between 
the finite and the infinite, so that the classification or distinc- 
tion which assumes that a thing must be either finite or infinite 
is faulty and defeAive. 

SALV. So it seems to me. And if we consider discrete quanti- 
ties I think there is, between finite and infinite quantities, a 
third intermediate term which corresponds to every assigned 
number; so that if asked, as in the present case, whether the 
finite parts of a continuum are finite or infinite in number the 
best reply is that they are neither finite nor infinite but corre- 
spond to every assigned number. In order that this may be 
possible, it is necessary that those parts should not be included 
within a limited number, for in that case they would not corre- 
spond to a number which is greater; nor can they be infinite in 
number since no assigned number is infinite; and thus at  the 
pleasure of the questioner we may, to any given line, assign a 
hundred finite parts, a thousand, a hundred thousand, or indeed 
any number we may please so long as it be not infinite. I grant, 
therefore, to the philosophers, that the continuum contains as 

many 
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many finite parts as they please and I concede also that it con- 
tains them, either aCtually or potentially, as they may like; but 
I must add that just as a line ten fathoms [cannel in length con- 
tains ten lines each of one fathom and forty lines each of one 
cubit [bracciu] and eighty lines each of half a cubit, etc., so it 
contains an infinite number of points; call them a&ual or po- 
tential, as you like, for as to this detail, Simplicio, I defer to your 
opinion and to your judgment. 

F321 
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S ~ P .  I cannot help admiring your discussion; but I fear 
that this parallelism between the points and the finite parts 
contained in a line will not prove satisfadtory, and that you will 
not find it so easy to divide a given line into an infinite num- 
ber of points as the philosophers do to cut it into ten fathoms or 
forty cubits; not only so, but such a division is quite impossible 
to realize in pradtice, so that this will be one of those poten- 
tialities which cannot be reduced to a&uality. 
SALV. The fact that something can be done only with effort 

or diligence or with great expenditure of time does not render it 
impossible; for I think that you yourself could not easily divide 
a line into a thousand parts, and much less if the number of 
parts were 937 or any other large prime number. But if I 
were to accomplish this division which you deem impossible as 
readily as another person would divide the line into forty parts 
would you then be more willing, in our discussion, to concede the 
possibility of such a division? 

SIMP. In general I enjoy greatly your method; and replying 
to your query, I answer that it would be more than sufficient 
if it prove not more difficult to resolve a line into points than to 
divide it into a thousand parts. 
SALV. I will now say something which may perhaps astonish 

you; it refers to the possibility of dividing a line into its in- 
finitely small elements by following the same order which one 
employs in dividing the same line into forty, sixty, or a hundred 
parts, that is, by dividing it into two, four, etc. He who thinks 
that, by following this method, he can reach an infinite number 
of points is greatly mistaken; for if this process were followed to 

eternity 
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eternity there would still remain finite parts which were un- 
divided. 

Indeed by such a method one is very far from reaching the 
goal of indivisibility; on the contrary he recedes from it and 
while he thinks that, by continuing this division and by multi- 
plying the multitude of parts, he will approach infinity, he is, 
in my opinion, getting farther and farther away from it. My 
reason is this. In the preceding discussion we concluded that, 
in an infinite number, it is necessary that the squares and cubes 
should be as numerous as the totality of the natural numbers 
[tutti i numerz], because both of these are as numerous as their 
roots which constitute the totality of the natural numbers. 
Next we saw that the larger the numbers taken the more sparsely 
distributed were the squares, and still more sparsely the cubes; 
therefore it is clear that the larger the numbers to which we pass 
the farther we recede from the infinite number; hence it follows 

that, since this process carries us farther and farther from the 
end sought, if on turning back we shall find that any number 
can be said to be infinite, it must be unity. Here indeed are 
satisfied all those conditions which are requisite for an infinite 
number; I mean that unity contains in itself as many squares as 
there are cubes and natural numbers [tutti i numerz]. 

SIMP. I do not quite grasp the meaning of this. 
SALV. There is no difficulty in the matter because unity is a t  

once a square, a cube, a square of a square and all the other 
powers [dignita]; nor is there any essential peculiarity in squares 
or cubes which does not belong to unity; as, for example, the 
property of two square numbers that they have between them a 
mean proportional; take any square number you please as the 
first term and unity for the other, then you will always find a 
number which is a mean proportional. Consider the two square 
numbers, 9. and 4; then 3 is the mean proportional between 
9 and I ; while 2 is a mean proportional between 4 and I ; between 
9 and 4 we have 6 as a mean proportional. A property of cubes 
is that they must have between them two mean proportional 
numbers; take 8 and 27; between them lie 12 and 18; while 

between 
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SECOND DAY 
R. While Simplicio and I were awaiting 

your arrival we were trying to recall that last 
consideration which you advanced as a prin- 
ciple and basis for the results you intended to 
obtain; this consideration dealt with the 
resistance which all solids offer to fra&ure 
and depended upon a certain cement which 
held the parts glued together so that they 

would yield and separate only under considerable pull botente 
uttruzzione]. Later we tried to find the explanation of this 
coherence, seeking it mainly in the vacuum; this was the occa- 
sion of our many digressions which occupied the entire day and 
led us far afield from the original question which, as I have 
already stated, was the consideration of the resistance [resistenza] 
that solids offer to fraCture. 
SALV. I remember it all very well. Resuming the thread of 

our discourse, whatever the nature of this resistance which solids 
offer to large traCtive forces [violentu uttruzzione] there can a t  
least be no doubt of its existence; and though this resistance is 
very great in the case of a dire& pull, it is found, as a rule, to be 
less in the case of bending forces [nel eviolenturgli per truverso]. 
Thus, for example, a rod of steel or of glass will sustain a longi- 
tudinal pull bf a thousand pounds while a weight of fifty pounds 
would be quite sufficient to break it if the rod were fastened at  
right angles into a vertical wall. It is this second type of re- 
sistance which we must consider, seeking to discover in what 

proportion 
  IS^ 
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proportion it is found in prisms and cylinders of the same 
material, whether alike or unlike in shape, length, and thick- 
ness. In this discussion I shall take for granted the well-known 
mechanical principle which has been shown to govern the 
behavior of a bar, which we call a lever, namely, that the force 
bears to the resistance the inverse ratio of the distances which 
separate the fulcrum from the force and resistance respedtively. 

SIMP. This was demonstrated first of all by Aristotle, in his 
Mechanics. 

SALV. Yes, I am willing to concede him priority in point of 
time; but as regards rigor of demonstration the first place must 
be given to Archimedes, since upon a single proposition proved 
in his book on Equilibrium* depends not only the law of the 
lever but also those of most other mechanical devices. 

SAGR. Since now this principle is fundamental to all the 
demonstrations which you propose to set forth would it not be 
advisable to give us a complete and thorough proof of this 
proposition unless possibly it would take too much time? 

SALV. Yes, that would be quite proper, but it is better I 
think to approach our subjedt in a manner somewhat different 
from that employed by Archimedes, namely, by first assuming 
merely that equal weights placed in a balance of equal arms will 
produce equilibrium-a principle also assumed by Archimedes- 
and then proving that it is no less true that unequal weights 
produce equilibrium when the arms of the steelyard have 
lengths inversely proportional to the weights suspended from 
them; in other words, it amounts to the same thing whether 
one places equal weights at  equal distances or unequal weights 
a t  distances which bear to each other the inverse ratio of the 
weights. 

In order to make this matter clear imagine a prism or solid 
cylinder, AB, suspended a t  each end to the rod [Zimu] HI, and 
supported by two threads HA and IB; it is evident that if I 
attach a thread, C, at  the middle point of the balance beam HI, 
the entire prism AB will, according to the principle assumed, hang 
in equilibrium since one-half its weight lies on one side, and the 
other half on the other side, of the point of suspension C. Now 

* Work of Archimedes. Trans. by T. L. Heath, pp. 189-220. [Trans.] 
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suppose the prism to be divided into unequal parts by a plane 

through the line D, and let the part DA be the larger and DB 
the smaller: this division having been made, imagine a thread 
ED, attached a t  the point E and supporting the parts AD and 
DB, in order that these parts may remain in the same position 
relative to line HI: and since the relative position of the prism 
and the beam HI remains unchanged, there can be no doubt 
but that the prism will maintain its former state of equilibrium. 

b531 

Fig. 14 

But circumstances would remain the same ‘if that part of the 
prism which is now held up, at  the ends, by the threads AH and 
DE were supported a t  the middle by a single thread GL; and 
likewise the other part DB would not change position if held 
by a thread EM placed at  its middle point. Suppose now the 
threads HA, ED, and IB to be removed, leaving only the two 
GL and FM, then the same equilibrium will be maintained so 
long as the suspension is at  C. Now let us consider that we have 
here two heavy bodies AD and DB hung at  the ends G and F, of 
a balance beam GF in equilibrium about the point C, so that 
the line CG is the distance from C to the point of suspension 
of the heavy body AD, while CF is the distance a t  which the 
other heavy body, DB, is supported. It remains now only to 
show that these distances bear to each other the inverse ratio 
of the weights themselves, that is, the distance GC is to the 
distance CF as the prism DB is to the prism DA-a proposition 
which we shall prove as follows: Since the line GE is the half of 
EH, and since EF is the half of EI, the whole length GF will be 

half 
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half of the entire line HI, and therefore equal to CI: if now we 
subtratt the common part CF the remainder GC will be equal to 
the remainder FI, that is, to FE, and if to each of these we add 
CE we shall have GE equal to CF: hence GE:EF=FC:CG. 
But GE and EF bear the same ratio to each other as do their 
doubles HE and EI, that is, the same ratio as the prism AD to 
DB. Therefore, by equating ratios we have, convertendo, the 
distance GC is to the distance CF as the weight BD is to the 
weight DA, which is what I desired to prove. 

[I541 
If what precedes is clear, you will not hesitate, I think, to 

admit that the two prisms AD and DB are in equilibrium about 
the point C since one-half 6f the whole body AB lies on the 
right of the suspension C and the other half on the left; in other 
words, this arrangement is equivalent to two equal weights dis- 
posed at  equal distances. I do not see how any one can doubt, if 
the two prisms AD and DB were transformed into cubes, spheres, 
or into any other figure whatever and if G and F were retained as 
points of suspension, that they would remain in equilibrium 
about the point C, for it is only too evident that change of figure 
does not produce change of weight so long as the mass [quantitci 
di materia] does not vary. From this we may derive the general 
conclusion that any two heavy bodies are in equilibrium at 
distances which are inversely proportional to their weights. 

This principle established, I desire, before passing to any 
other subjett, to call your attention to the fa& that these forces, 
resistances, moments, figures, etc., may be considered either in 
the abstratt, dissociated from matter, or in the concrete, asso- 
ciated with matter. Hence the properties which belong to 
figures that are merely geometrical and non-material must be 
modified when we fill these figures with matter and therefore 
give them weight. Take, for example, the lever BA which, 
resting upon the support E, is used to lift a heavy stone D. 
The principle just demonstrated makes it clear that a force ap- 
plied a t  the extremity B will just suffice to equilibrate the 
resistance offered by the heavy body D provided this force 
[momento] bears to the force [momento] at D the same ratio as the 

distance 
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distance AC bears to the distance CB; and this is true so long as 
we consider only the moments of the single force at  B and of the 
resistance at  D, treating the lever as an immaterial body devoid 
of weight. But if we take into account the weight of the lever 
itself-an instrument which may be made either of wood or of 
iron-it is manifest that, when this weight has been added to the 

[I551 
force a t  B, the ratio will be changed and must therefore be 
expressed in different terms. Hence before going further let 

Fig. 15 
us agree to distinguish between these two points of view; when 
we consider an instrument in the abstradt, i. e., apart from the 
weight of its own material, we shall speak of “taking it in an 
absolute sense ” [premiere assolutamente]; but if we fill one of these 
simple and absolute figures with matter and thus give it weight, 
we shall refer to such a material figure as a “moment” or 
“compound force” [momento o f o rm composta]. 

SAGR. I must break my resolution about not leading you off 
into a digression; for I cannot concentrate my attention upon 
what is to follow until a certain doubt is removed from my 
mind, namely, you seem to compare the force at  B with the 
total weight of the stone D, a part of which-possibly the 
greater part-rests upon the horizontal plane: so that . . . 

SALV. I understand perfedtly: you need go no further. How- 
ever please observe that I have not mentioned the total weight 
of the stone; I spoke only of its force [momento] a t  the point A, 
the extremity of the lever BA, which force is always less than 
the total weight of the stone, and varies with its shape and 
elevation. 

SAGR. Good: but there occurs to me another question about 
which 
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which I am curious. For a complete understanding of this 
matter, I should like you to show me, if possible, how one can 
determine what part of the total weight is supported by the 
underlying plane and what part by the end A of the lever. 
SALV. The explanation will not delay us long and I shall 

therefore have pleasure in granting your request. In the accom- 
panying figure, let us understand that the weight having its 
center of gravity a t  A rests with the end B upon the horizontal 
plane and with the other end upon the lever CG. Let N be 
the fulcrum of a lever to which the force [potenza] is applied at  G. 
Let fafl the perpendiculars, A 0  and CF, from the center A and 
the end C. Then I say, the magnitude [momento] of the entire 
weight bears to the magnitude of the force rmomento della 
potenza] a t  G a ratio comcounded of the ratio between the two 

Fig. 16 
distances GN and NC and the ratio between FB and BO. 
Lay off a distance X such that its ratio to NC is the same as that 
of BO to FB; then, since the total weight A is counterbalanced 
by the two forces at  B and at  C, it follows that the force a t  B is to 
that a t  C as the distance FO is to the distance OB. Hence, 

componendo, the sum of the forces a t  B and C, that is, the total 
weight A [momento d i  tutto '1 peso A], is to the force at  C as the 
line FB is to the line BO, that is, as NC is to X: but the force 
[momento deZZu potenza] applied at  C is to the force applied at  
G as the distance GN is to the distance NC; hence it follows, 
ex equali  in proportione perturbata," that the entire weight A is 
to the force applied a t  G as the distance GN is to X. But the 
ratio of GN to X is compounded of the ratio of GN to NC and of 
NC to X, that is, of FB to BO; hence the weight A bears to the 

* For definition of perturbutu see Todhunter's Euclid. Book V, Def. 20. 
[ Trunr.] 
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equilibrating force a t  G a ratio compounded of that of GN to 
NC and of FB to BO: which was to be proved. 

Let us now return to our original subjett; then, if what has 
hitherto been said is clear, it will be easily understood that, 

PROPOSITION I 
A prism or solid cylinder of glass, steel, wood or other break- 

able material which is capable of sustaining a very heavy weight 
when applied longitudinally is, as previously remarked, easily 
broken by the transverse application of a weight which may be 
much smaller in proportion as the length of the cylinder exceeds 
its thickness. 

Let us imagine a solid prism ABCD fastened into a wall a t  
the end AB, and supporting a weight E at the other end; under- 
stand ais0 that the wall is vertical and that the prism or cylinder 
is fastened at  right angles to the wall. It is clear that, if the 
cylinder breaks, fra&ure will occur a t  the point B where the 
edge of the mortise a&s as a fulcrum for the lever BC, to which 
the force is applied; the thickness of the solid BA is the other arm 
of the lever along which is located the resistance. This resistance 
opposes the separation of the part BD, lying outside the wall, 
from that portion lying inside. From the preceding, it follows 
that the magnitude [momento] of the force applied at  C bears to 
the magnitude [momento] of the resistance, found in the thickness 
of the prism, i. e., in the attachment of the base BA to its con- 
tiguous parts, the same ratio which the length CB bears to half 
the length BA; if now we define absolute resistance to fratlure 

[I571 
as that offered to a longitudinal pull (in which case the stretch- 
ing force a& in the same direkition as that through which the 
body is moved), then it follows that the absolute resistance of 
the prism BD is to the breaking load placed a t  the end of the 
lever BC in the same ratio as the length BC is to the half of AB 
in the case of a prism, or the semidiameter in the case of a 
cylinder. This is our first proposition.* Observe that in what 

* The one fundamental error which is implicitly introduced into this 
proposition and which is carried through the entire discussion of the 
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has here been said the weight of the solid BD itself has been 
left out of consideration, or rather, the prism has been assumed 
to be devoid of weight. But if the weight of the prism is to be 
taken account of in conjundtion with the weight E, we must add 

to the weight E one 
half that of the 
prism BD: so that 
if, for example, the 
latter weighs two 
p o u n d s  and the 
weight E is t e n  

1 pounds we  must 
treat the weight E 
as if it were eleven 

SIMP. Why not 

SALV. The weight 
I E, my dear Simp- 

licio, hanging a t  the 
extreme end C aCts 
upon the lever BC 

__ with its full mo- 
ment of ten pounds : - - so also would the 

Fig. 17 solid B D  if sus- 
pended at  the same point exert its full moment of two pounds; 
but, as you know, this solid is uniformly distributed through- 

Second Day consists in a failure to  see that, in such a beam, there must 
be equilibrium between the forces of tension and compression over any 
cross-section. The correct point of view seems first t o  have been found 
by E. Mariotte in 1680 and by A. Parent in 1713. Fortunately this 
error does not vitiate the conclusions of the subsequent propositions 
which deal only with proportions-not actual strength-of beams. 
Following K. Pearson (Todhunter’s History of Elasticity) one might say 
that Galileo’s mistake lay in supposing the fibres of the strained beam to 
be inextensible. Or, confessing the anachronism, one might say that the 
error consisted in taking the lowest fibre of the beam as the neutral axis. 

[Trans.] 

4 > . -  
i 

I) pounds. 

twelve? 
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out its entire length, BC, so that the parts which lie near the 
end B are less effeaive than those more remote. 

Accordingly if we strike a balance between the two, the 
weight of the entire prism may be considered as concentrated 
at  its center of gravity which lies midway of the lever BC. 
But a weight hung at  the extremity C exerts a moment twice 
as great as it would if suspended from the middle: therefore 

if we consider the moments of both as located a t  the end C we 
must add to the weight E one-half that of the prism. 

SIMP. I understand perfedlly; and moreover, if I mistake not, 
the force of the two weights BD and E, thus disposed, would 
exert the same moment as would the entire weight BD together 
with twice the weight E suspended at  the middle of the lever 
BC. 

SALV. Precisely so, and a fqdl worth remembering. Now 
we can readily understand 

[IsSI 

PROPOSITION I1 
How and in what proportion a rod, or rather a prism, whose 

width is greater than its thickness offers more resistance to 
fra&ure when the 
force is applied in 
the dire&ion of its 
breadth than in the 
direation o f i t s 
thickness. 

For the sake of 
clearness, take a 
r u l e r  ad whose 
width is ac a n d  
whose thickness, Fig. 18 

cb, is much less than its width. The question now is why will 
the ruler, if stood on edge, as in the first figure, withstand a 
great weight T, while, when laid flat, as in the second figure, 
it will not support the weight X which is less thanT. The 
answer is evident when we remember that in the one case 

the 
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the fulcrum is at  the line bc, and in the other case at  cu, 
while the distance at  which the force is applied is the same in 
both cases, namely, the length bd: but in the first case the 
distance of the resistance from the fulcrum-half the line ca- 
is greater than in the other case where it is only half of bc. 
Therefore the weight T is greater than X in the same ratio as 
half the width cu is greater than half the thickness bc, since the 
former acts as a lever arm for cu, and the latter for cb, against 
the same resistance, namely, the strength of all the fibres in the 
cross-section ub. We conclude, therefore, that any given ruler, 
or prism, whose width exceeds its thickness, will offer greater 
resistance to fracture when standing on edge than when lying 
flat, and this in the ratio of the width to the thickness. 

PROPOSITION I11 
Considering now the case of a prism or cylinder growing longer 

in a horizontal direction, we must find out in what ratio the 
moment of its own weight increases in comparison with its 
resistance to fracture. This moment I find increases in propor- 

tion to the square of the length. In order to prove this let AD 
be a prism or cylinder lying horizontal with its end A firmly fixed 
in a wall. Let the length of the prism be increased by the addi- 
tion of the portion BE. It is clear that merely changing the 
length of the lever from AB to AC will, if we disregard its weight, 
increase the moment of the force [at the end] tending to produce 
fracture at  A in the ratio of CA to BA. But, besides this, the 
weight of the solid portion BE, added to the weight of the solid 
AB increases the moment of the total weight in the ratio of the 
weight of the prism AE to that of the prism AB, which is the 
same as the ratio of the length AC to AB. 

It follows, therefore, that, when the length and weight are 
simultaneously increased in any given proportion, the moment, 
which is the product of these two, is increased in a ratio which is 
the square of the preceding proportion. The conclusion is then 
that the bending moments due to the weight of prisms and 
cylinders which have the same thickness but different lengths, 

bear 
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bear to each other a ratio which is the square of the ratio of 
their lengths, or. what is the same thing, the ratio of the squares 
of their Gngths.' 

We shall next show in what ratio the resistance to fra&ure 

Fig. 19 
[bending strength], in prisms and cylinders, increases with in- 

[I601 
crease of thickness while the length remains unchanged. Here 
I say that 

PROPOSITION IV 
In prisms and cylinders of equal length, but of unequal 
thicknesses, the resistance to f r a h r e  increases in the same 
ratio as the cube of the diameter of the thickness, i. e., of 
the base. 

Let A and B be two cylinders of equal lengths DG, FH; let their 
bases be circular but unequal, having the diameters CD and EF. 
Then I say that the resistance to fracture offered by the cylinder 

B 
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B is to that offered by A as the cube of the diameter FE is to the 
cube of the diameter DC. For, if we consider the resistance to 
fra&ure by longitudinal pull as dependent upon the bases, i. e., 
upon the circles EF and DC, no one can doubt that the strength 
[reristenza] of the cylinder B is greater than that of A in the 
same proportion in which the area of the circle EF exceeds that 
of CD; because it is precisely in this ratio that the number of 
fibres binding the parts of the solid together in the one cylinder 
exceeds that in the other cylinder. 

But in the case of a force adling transversely it must be re- 
membered that we are employing two levers in which the forces 

n 

- 

Fig. 20 

are applied a t  distances DG, 
FH, and the fulcrums are 
located a t  the points D and 
F; but the resistances are 
applied a t  distances which 
are equal to the radii of the 
circles DC and EF, since 
the fibres distributed over 
these entire cross-se&ions 
a& as if concentrated a t  the - 

centers. Remembering this and remembering also that the 
arms, DG and FH, through which the forces G and H a& are 
equal, we can understand that the resistance, located a t  the 
center of the base EF, a&ing against the force a t  H, is more 
effe&ive [muggiore] than the resistance at the center of the 
base CD opposing the force G, in the ratio of the radius FE 
to the radius DC. Accordingly the resistance to fra&ure of- 
fered by the cylinder B is greater than that of the cylinder A 
in a ratio which is compounded of that of the area of the circles 
EF and DC and that of their radii, i. e., of their diameters; but 
the areas of circles are as the squares of their diameters. There- 
fore the ratio of the resistances, being the produ& of the two 
preceding ratios, is the same as  that of the cubes of the diameters. 
This is what I set out to prove. Also since the volume of a cube 

[I611 
varies as the third power of its edge we may say that the re- 

sistance 
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sistance [strength] of a cylinder whose length remains constant 
varies as the third power of its diameter. 

From the preceding we are able to conclude that 

The resistance [strength] of a prism or cylinder of constant 
length varies in the sesquialteral ratio of its volume. 

This is evident because the volume of a prism or cylinder of 
constant altitude varies dire&ly as the area of its base, i. e., as 
the square of a side or diameter of this base; but, as just demon- 
strated, the resistance [strength] varies as the cube of this same 
side or diameter. Hence the resistance varies in the sesquialteral 
ratio of the volume-consequently also of the weight-f the 
solid itself. 

SIMP. Before proceeding further I should like to have one of 
my difficulties removed. Up to this point you have not taken 
into consideration a certain other kind of resistance which, it 
appears to me, diminishes as the solid grows longer, and this is 
quite as true in the case of bending as in pulIing; it is precisely 
thus that in the case of a rope we observe that a very long one is 
less able to support a large weight than a short one. Whence, I 
believe, a short rod of wood or iron will support a greater weight 
than if it were long, provided the force be always applied longi- 
tudinally and not transversely, and provided also that we take 
into account the weight of the rope itself which increases with its 
length. 

SALV. I fear, Simplicio, if I corremy catch your meaning, 
that in this particular you are making the same mistake as many 
others; that is if you mean to say that a long rope, one of perhaps 
40 cubits, cannot hold up so great a weight as a shorter length, 
say one or two cubits, of the same rope. 

SIMP. That is what I meant, and as far as I see the proposition 
is highly probable. 

SALV. On the contrary, I consider it not merely improbable 
but false; and I think I can easily convince you of your error. 
Let AI3 represent the rope, fastened at  the upper end A: at the 
lower end attach a weight C whose force is just sufficient to 

break 

COROLLARY 
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break the rope. Now, Simplicio, point out the em& place where 
you think the break ought to occur. 

[I621 
SIMP. Let us say D. 
SALV. And why a t  D? 
SIMP. Because a t  this point the rope is not strong enough to 

support, say, 100 pounds, made up of the portion of the rope DB 
and the stone C. 

SALV. Accordingly whenever the rope is stretched [vioZmtata) 
with the weight of 100 pounds a t  D it will break there. 

SIMP. I think so. 
SALV. But tell me, if instead of attaching the weight a t  the 

end of the Tope, B, one fastens it a t  a point nearer 
D, say, a t  E: or if, instead of k i n g  the upper end 
of the rope a t  A, one fastens it a t  some point F, just 
above D, will not the rope, at  the point D, be subje& 
to the same pull of 100 pounds? 

SIMP. It would, provided you include with the 
stone C the portion of rope EB. 

SALV. Let us therefore suppose that the rope is 
E stretched a t  the point D with a weight of 100 pounds, 

then according to your own admission it will break; 
but FE is only a small portion of AB; how can you 
therefore maintain that the long rope is weaker than 
the short one? Give up then this erroneous view 
which you share with many very intelligent people, 
and let us proceed. 

Now having demonstrated that, in the case of 
[uniformly loaded] prisms and cylinders of constant 
thickness, the moment of force tending to produce 

Fig. 21 fra&ure [momento sopra le proprie resistenze] varies 
as the square of the length; and having likewise shown that, 
when the length is constant and the thickness varies, the resist- 
ance to fra&ure varies as the cube of the side, or diameter, 
of the base, let us pass to the investigation of the case of solids 
which simultaneously vary in both length and thickness. Here I 
observe that, 
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PROPOSITION V 
Prisms and cylinders which differ in both length and 
thickness offer resistances to frahure [i. e., can support at  
their ends loads] which are direttly proportional to the 
cubes of the diameters of their bases and inversely propor- 
tional to their lengths. 

Let ABC and DEF be two such cylinders; then the resistance 
[bending strength] of the cylinder AC bears to the resistance of 
the cylinder DF a ratio which is the produh of the cube of the 
diameter AB divided by the cube of the diameter DE, and of the 
length EF divided by the A 
length BC. Make EG 
equal to BC: let H be a B 
third proportional to the 
lines AB and DE; let I 
be a fourth proportional, 
[AB/DE=H/I]: and let E 
I :S =EF :BC. G F 

Now since the resistance *- B 
of the cylinder AC is to D-E 
that of the cylinder DG H- 
as the cube of AB is to the I I 

cube of DE, that is, as the 
length AB is to the length s - 
I; and since the resistance 
of the cylinder DG is to that of the cylinder DF as the length 
FE is to EG, that is, as I is to S, it follows that the length AB 
is to S as the resistance of the cylinder AC is to that of the 
cylinder DF. But the line AB bears to S a ratio which is the 
produ& of AB/I and I/S. Hence the resistance [bending 
strength] of the cylinder AC bears to the resistance of the cyl- 
inder DF a ratio which is the produ& of AB/I (that is, ABs/ 
DE3 and of I/S (that-is, EF/BC): which is what I meant to 
prove, 

This proposition having been demonstrated, let us next 
consider 

I1631 

I 

Fig. 22 
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consider the case of prisms and cylinders which are similar. 
Concerning these we shall show that, 

PROPOSITION VI 
In the case of similar cylinders and prisms, the moments 
[stretching forces] which result from multiplying together 
their weight and length [i. e., from the moments produced 
by their own weight and length], which latter atts as a 
lever-arm, bear to each other a ratio which is the sesqui- 
alteral of the ratio between the resistances of their bases. 

In order to prove this let us indicate the two similar cylinders 
by AB and CD : then the magnitude of the force [momento] in the 
cylinder AB, opposing the resistance of its base B, bears to the 
magnitude [momento] of the force at  CD, opposing the resistance 
of its base D, a ratio which is the sesquialteral of the ratio 

[I641 
between the resistance of the base B 

A 

C 

Fig. 23 

and the resistance of the 
base D. And since the 
solids AB and CD, are 

Beffe&ive in opposing 
the resistances of their 
bases B and D, in pro- 
portion to their weights 
and to the mechanical 
advantages [ f o m ]  of 

their lever arms respettively, and since the advantage [ f o m ]  of 
the lever arm AB is equal to the advantage [ f o m ]  of the lever 
arm CD (this is true because in virtue of the similarity of the 
cylinders the length AB is to the radius of the base B as the 
length CD is to the radius of the base D), it follows that the total 
force [momento] of the cylinder AB is to the total force [momento] 
of the cylinder CD as the weight alone of the cylinder AB is to 
the weight alone of the cylinder CD, that is, as the volume of 
the cylinder AB [Z’istesso ciZidro AB] is to the volume CD 
[all’istesso CD]: but these are as the cubes of the diameters 
of their bases B and D; and the resistances of the bases, being 

to 
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to each other as their areas, are to each other consequently 
as the squares of their diameters. Therefore the forces [mommtzl 
of the cylinders are to each other in the sesquialteral ratio of the 
resistance of their bases.* 

SIMP. This proposition strikes me as both new and surprising: 
at  first glance it is very different from anything which I my- 
self should have guessed: for since these figures are similar 
in all other respec%, I should have certainly thought that 
the forces [momentz] and the resistances of these cylinders would 
have borne to each other the same ratio. 

SAGR. This is the proof of the proposition to which I referred, 
a t  the very beginning of our discussion, as one imperfedtly un- 
derstood by me. 

SALV. For a while, Simplicio, I used to think, as you do, that 
the resistances of similar solids were similar; but a certain casual 
observation showed me that similar solids do not exhibit a 
strength which is proportional to their size, the larger ones being 
less fitted to undergo rough usage just as tall men are more apt 
than small children to be injured by a fall. And, as we re- 
marked a t  the outset, a large beam or column falling from a 

given height will go to pieces when under the same circumstances 
a small scantling or small marble cylinder will not break. It was 
this observation which led me to the investigation of the fa& 
which I am about to demonstrate to you: it is a very remarkable 
thing that, among the infinite variety of solids which are similar 
one to another, there are no two of which the forces [momentz], 
and the resistances of these solids are related in the same ratio. 

SIMP. You remind me now of a passage in Aristotle’s Questions 

* The preceding paragraph beginning with Prop. VI is of more than 
usual interest as illustrating the confusion of terminology current in the 
time of Galileo. The translation given is literal except in the case of 
those words for. which the Italian is supplied. The facts which Galileo 
has in mind are so evident that i t  is difficult t o  see how one can here 
interpret “moment” to mean the force “opposing the resistance of its 
base,” unless “the force of the lever arm AB” be taken to  mean “the 
mechanical advantage of the lever made up of A B  and the radius of the 
base B”; and similarly for “the force of the lever arm CD.” 

[Trans.] 

Ms1 
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in Mechanics in which he tries to explain why it is that a wooden 
beam becomes weaker and can be more easily bent as it grows 
longer, notwithstanding the fa& that the shorter beam is thin- 
ner and the longer one thicker: and, if I remember corredtly, 
he explains it in terms of the simple lever. 

SALV. Very true: but, since this solution seemed to leave 
room for doubt, Bishop di Guevara,' whose truly learned com- 
mentaries have greatly enriched and illuminated this work, 
indulges in additional clever speculations with the hope of thus 
overcoming all difficulties; nevertheless even he is confused as 
regards this particular point, namely, whether, when the length 
and thickness of these solid figures increase in the same ratio, 
their strength and resistance to fraEture, as well as to bending, 
remain constant. After much thought upon this subje&, I have 
reached the following result. First I shall show that, 

PROPOSITION VI1 
Among heavy prisms and cylinders of similar figure, there 
is one and only one which under the stress of its own 
weight lies just on the limit between breaking and not 
breaking: so that every larger one is unable to carry the 
load of its own weight and breaks; while every smaller one 
is able to withstand some additional force tending to break it. 

Let AB be a heavy prism, the longest possible that will just 
sustain its own weight, so that if it be lengthened the least bit it 
will break. Then, I say, this prism is unique among all similar 
prisms-infinite in number-in occupying that boundary line 
between breaking and not breaking; so that every larger one 

[I661 
will break under its own weight, and every smaller one will not 
break, but will be able to withstand some force in addition to its 
own weight. 

Let the prism CE be similar to, but larger than, AB: then, 
I say, it will not remain intadt but will break under its own 
weight. Lay off the portion CD, equal in length to AB. And, 
since, the resistance [bending strength] of CD is to that of AB as 

* Bishop of Teano; b. 1561; d. 1641. [Truns.] 
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the cube of the thickness of CD is to the cube of the thickness of 
AB, that is, as the prism CE is to the similar prism AB, it follows 
that the weight of CE is the utmost load which a prism of the 
length CD can sustain; but the length of CE is greater; there- 
fore the prism CE will break.* 
Now take another prism FG n 
which is smaller than AB. 
Let FH equal AB, then it can 
be shown in a similar manner c 
that the resistance [bending 
strength] of FG is to that of 
AB as the prism FG is to the prism AB provided the dis- 
tance AB that is FH, is equal to the distance FG; but AB 
is greater than FG, and therefore the moment of the prism 
FG applied at  G is not sufficient to break the prism FG. 

SAGR. The demonstration is short and clear; while the proposi- 
tion which, at  first glance, appeared improbable is now seen 
to be both true and inevitable. In order therefore to bring this 
prism into that limiting condition which separates breaking 
from not breaking, it would be necessary to change the ratio 
between thickness and length either by increasing the thickness 
or by diminishing the length. An investigation of this limiting 
state will, I believe, demand equal ingenuity. 

SALV. Nay, even more; for the question is more difficult; this 
I know because I spent no small amount of time in its discovery 
which I now wish to share with you. 

PROPOSITION VI11 

Fig. 24 

Given a cylinder or prism of the greatest length consist- 
ent with its not breaking under its own weight; and having 
given a greater length, to find the diameter of another 
cylinder or prism of this greater length which shall be the 
only and largest one capable of withstanding its own weight. 

Let BC be the largest cylinder capable of sustaining its own 
weight; and let DE be a length greater than AC: the problem is 
to find the diameter of the cylinder which, having the length 

DE, 
[1671 
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DE, shall be the largest one just able to withstand its own 
weight. Let I be a third proportional to the lengths DE and 
AC; let the diameter FD be to the diameter BA as DE is to I; 
draw the cylinder FE; then, among all cylinders having the 
same proportions, this is the largest and only one just capable 
of sustaining its own weight. 

Let M be a third proportional to DE and I: also let 0 be a 
fourth proportional to DE, I, and M; lay off FG equal to AC. 
Now,since the diameter FD is to the diameter AB as the length 
DE is to I, and since 0 is a fourth proportional to DE, I and M, 
it follows that Fx3:BA3=DE:0. But the resistance [bending 

strength] of the cylinder DG is 
to the resistance of the cylinder 
BC as the cube of FD is to the 
cube of BA: hence the resistance 
of the cylinder DG is to that of 

M- cylinder BC as the length DE is 
0- to 0. And since the moment 

of the cylinder BC is held in 
equilibrium by [e equuZe uZZU] its resistance, we shall accomplish 
our end (which is to prove that the moment of the cylinder FE 
is equal to the resistance located at  FD), if we show that the 
moment of the cylinder FE is to the moment of the cylinder BC 
as the resistance DF is to the resistance BA, that is, as the cube 
of FD is to the cube of BA, or as the length DE is to 0. The 
moment of the cylinder FE is to the moment of the cylinder 
DG as the square of DE is to the square of AC, that is, as the 
length DE is to I; but the moment of the cylinder DG is to the 
moment of the cylinder BC, as the square of DF is to the square 
of BA, that is, as the square of DE is to the square of I, or as the 
square of I is tc, the square of M, or, as I is to 0. Therefore by 
equating ratios, it results that the moment of the cylinder FE is 
to the moment of the cylinder BC as the length DE is to 0, that 
is, as the cube of DF is to the cube of BA, or as the resistance of 
the base DF is to the resistance of the base BA; which was to be 
proven. 

SAGR. This demonstration, Salviati, is rather long and diffi- 
cult 

Fig. 25 
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cult to keep in mind from a single hearing. Will you not, 
therefore, be good enough to repeat it? 

SALV. As you like; but I would suggest instead a more dire& 
and a shorter proof: this will, however, necessitate a different 
figure. 

SAGR. The favor will be that much greater: nevertheless I 
hope you will oblige me by putting into written form the argu- 
ment just given so that I may study it at  my leisure. 

SALV. I shall gladly do so. Let A denote a cylinder of diam- 
eter DC and the largest capable of sustaining its own weight: 
the problem is to determine a larger cylinder which shall be 
a t  once the maximum and the unique one capable of sustaining 
its own weight. 

Let E be such a cylinder, similar to A, having the assigned 
length, and having a diameter KL. Let MN be a third propor- 

let MN also be the diameter of an- 
other cylinder, X, having the same 
length as E: then, I say, X is the cyl- 
inder sought. Now since the resist- 
ance of the base DC is to the resist- 
ance of the base KL as the square of 
DC is to the square of KL, that is, asN 
the square of KL is to the square of 
MN, or, as the cylinder E is to the cylinder X, that is, as the 
moment E is to the moment X; and since also the resistance 
[bending strength] of the base KL is to the resistance of the 
base MN as the cube of KL is to the cube of MN, that is, 
as the cube of DC is to the cube of KL, or, as the cylinder A is 
to the cylinder E, that is, as the moment of A is to the moment 
of E; hence it follows, ex equali in proportione perturbata,* 
that the moment of A is to the moment of X as the resistance of 
the base DC is to the resistance of the base MN; therefore 
moment and resistance are related to each other in prism X 
precisely as they are in prism A. 

* For definition of perturbata see Todhunter’s Euclid, Book V, Def. 20. 
[Trans.] 

[I681 

tional to the two lengths DC and KL: A 

Fig. 26 
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follows : 
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Let us now generalize the problem; then it will read as 

Given a cylinder AC in which moment and resistance 
[bending strength] are related in any manner whatsoever; 
let DE be the length of another cylinder; then determine 
what its thickness must be in order that the relation be- 
tween its moment and resistance shall be identical with 
that of the cylinder AC. 

Using Fig. 25 in the same manner as above, we may say that, 
since the moment of the cylinder FE is to the moment of the 
portion DG as the square of ED is to the square of FG, that is, 
as the length DE is to I; and since the moment of the cylinder 
FG is to the moment of the cylinder AC as the square of FD is 
to the square of AB, or, as the square of ED is to the square of 
I, or, as the square of I is to the square of M, thdt is, as the 
length I is to 0; it follows, ex czqzuzli, that the moment of the 

[I691 
cylinder FE is to the moment of the cylinder AC as the length 
DE is to 0, that is, as the cube of DE is to the cube of I, or, 
as the cube of FD 'is to the cube of AB, that is, as the resistance 
of the base FD is to the resistance of the base AB; which was to 
be proven. 

From what has already been demonstrated, you can plainly 
see the impossibility of increasing the size of stru&ures to vast 
dimensions either in art or in nature; likewise the impossibility 
of building ships, palaces, or temples of enormous size in such a 
way that their oars, yards, beams, iron-bolts, and, in short, all 
their other parts will hold together; nor can nature produce 
trees of extraordinary size because the branches would break 
down under their own weight; so also it would be impossible to 
build up the bony stru&ures of men, horses, or other animals so 
as to hold together and perform their normal fun&ions if these 
animals were to be increased enormously in height; for this 
increase in height can be accomplished only by employing a 
material which is harder and stronger than usual, or by enlarging 
the size of the bones, thus changing their shape until the form 
and appearance of the animals suggest a monstrosity. This is 

perhaps 
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CHANGE OF POSITION. [De Motu Localzl 
Y purpose is to set forth a very new science 
dealing with a very ancient subject. There 
is, in nature, perhaps nothing older than 
motion, concerning which the books written 
by philosophers are neither few nor small; 
nevertheless I have discovered by experi- 
ment some properties of it which are worth 
knowing and which have not hitherto been 

either observed or demonstrated. Some superficial observations 
have been made, as, for instance, that the free motion [naturalem 
motum] of a heavy falling body is continuously accelerated; * 
but to just what extent this acceleration occurs has not yet been 
announced; for so far as I know, no one has yet pointed out that 
the distances traversed, during equal intervals of time, by a 
body falling from rest, stand to one another in the same ratio as 
the odd numbers beginning with unity.t 

It has been observed that missiles and projectiles describe 
a curved path of some sort; however no one has pointed out the 
fact that this path is a parabola. But this and other facts, not 
few in number or less worth knowing, I have succeeded in 
proving; and what I consider more important, there have been 
opened up to this vast and most excellent science, of which my 

* “Natural motion” of the author has here been translated into “free 
motion”-since this is the term used to-day to distinguish the “natural” 
from the “violent ” motions of the Renaissance. [Trans.] 

t A theorem demonstrated on p. 175 below. [Truns.] 
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work is merely the beginning, ways and means by which other 
minds more acute than mine will explore its remote corners. 

This discussion is divided into three parts; the first part 
deals with motion which is steady or uniform; the second treats 
of motion as we find it accelerated in nature; the third deals with 
the so-called violent motions and with projedtiles. 

[ I Y I  
UNIFORM MOTION 

In dealing with steady or uniform motion, we need a single 
definition which I give as follows : 

DEFINITION 
By steady or uniform motion, I mean one in which the dis- 

tances traversed by the moving particle during any equal 
intervals of time, are themselves equal. 

CAUTION 
We must add to the old definition (which defined steady mo- 

tion simply as one in which equal distances are traversed in 
equal times) the word “any,” meaning by this, all equal inter- 
vals of time; for it may happen that the moving body will 
traverse equal distances during some equal intervals of time 
and yet the distances traversed during some small portion of 
these time-intervals may not be equal, even though the time- 
intervals be equal. 

From the above definition, four axioms follow, namely: 

In the case of one and the same uniform motion, the distance 
traversed during a longer interval of time is greater than the 
distance traversed during a shorter interval of time. 

AXIOM 1 

A X I O M  11 
In the case of one and the same uniform motion, the time 

required ta traverse a greater distance is longer than the time 
required for a less distance. 
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AXIOM 111 
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In one and the same interval of time, the &stance traveised 
a t  a greater speed is larger than the distance traversed at  a 
less speed. 

[wl 
AXIOM Iv 

The speed required to traverse a longer distance is greater 
than that required to traverse a shorter distance during the 
same time-interval. 

THEOREM I, PROPOSITION I 
If a moving particle, carried uniformly a t  a constant speed, 
traverses two distances the time-intervals required are to 
each other in the ratio of these distances. 

Let a particle move uniformly with constant speed through 
two distances AB, BC, and let the time required to traverse AB 
be represented by DE; the time required to traverse BC, by EF; 

I :  : ! : : - T D T E  T F  : Y 
n 
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L A  1 A& 

Fig. 40 
then I say that the distance AB is to the distance BC as the 
time DE is to the time EF. 

Let the distances and times be extended on both sides towards 
G, H and I, K; let AG be divided into any number whatever of 
spaces each equal to AB, and in like manner lay off in DI 
exactly the same number of time-intervals each equal to DE. 
Again lay off in CH any number whatever of distances each 
equal to BC; and in FK exa&ly the same number of time- 
intervals each equal to EF; then will the distance BG and the 
time E1 be equal and arbitrary multiples of the distance BA 
and the time ED; and likewise the distance HB and the time 
KE are equal and arbitrary multiples of the distance CB and 
the time FE. 

And since DE is the time required to traverse AB, the whole 
time 
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time E1 will be required for the whole distance BG, and when 
the motion is uniform there will be in E1 as many time-intervals 
each equal to DE as there are distances in BG each equal to BA; 
and likewise it follows that KE represents the time required to 
traverse HB. 

Since, however, the motion is uniform, it follows that if the 
distance GB is equal to the distance BH, then must also the 
time IE be equal to the time EK; and if GB is greater than BH, 
then also IE will be greater than EK; and if less, less.+ There 

[I931 
are then four quantities, the first AB, the second BC, the third 
DE, and the fourth EF; the time IE and the distance GB are 
arbitrary multiples of the first and the third, namely of the 
distance AB and the time DE. 

But it has been proved that both of these latter quantities 
are either equal to, greater than, or less than the time EK and 
the space BH, which are arbitrary multiples of the second and 
the fourth. Therefore the first is to the second, namely the 
distance AB is to the distance BC, as the third is to the fourth, 

THEOREM 11, PROPOSITION I1 
namely the time DE is to the time EF. Q. E. D. 

If a moving particle traverses two distances in equal in- 
tervals of time, these distances will bear to each other the 
same ratio as the speeds. And conversely if the distances 
are as the speeds then the times are equal. 

Referring to Fig. 40, let AB and BC represent the two distances 
traversed in equal time-intervals, the distance AB for instance 
with the velocity DE, and the distance BC with the velocity 
EF. Then, I say, the distance AB is to the distance BC as the 
velocity DE is to the velocity EF. For if equal multiples of 
both distances and speeds be taken, as above, namely, GB and 
IE of AB and DE respefively, and in like manner HB and KE 
of BC and EF, then one may infer, in the same manner as 
above, that the multiples GB and IE are either less than, equal 

* The method here employed by Galileo is that  of Euclid as set forth 
in the famous 5th Definition of the Fifth Book of his Elements, for which 
see art. Geometry Ency. Brit. I I th Ed. p. 683. [ Truns.] 
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to, or greater than equal multiples of BH and EK. Hence the 
theorem is established. 

THEOREM 111, PROPOSITION I11 
In the case of unequal speeds, the time-intervals required 
to traverse a given space are to each other inversely as 
the speeds. 

Let the larger of the two unequal speeds be indicated by A; 
the smaller, by B; and let the motion corresponding to both 
traverse the given space CD. Then I say the time required to 
traverse the distance CD at speed A t-1 
A is to the time required to trav- 

C’  erse the same distance a t  speed 
B, as the speed B is to the speed 
A. For let CD be to CE as A 
is to B; then, from the preced- B - 
ing, it follows that the time re- 
quired to complete the distance CD a t  speed A is the same as 

[I941 
the time necessary to complete CE at speed B; but the time 
needed to traverse the distance CE at speed B is to the time re- 
quired to traverse the distance CD at the same speed as CE 
is to CD; therefore the time in which CD is covered a t  speed 
A is to the time in which CD is covered a t  speed B as CE is to 

THEOREM N, PROPOSITION IV 

I 
E D 

Fig. 41 

CD, that is, as speed B is to speed A. Q. E. D. 

If two particles are carried with uniform motion, but each 
with a different speed, the distances covered by them dur- 
ing unequal intervals of time bear to each other the com- 
pound ratio of the speeds and time intervals. 

Let the two particles which are carried with uniform motion 
be E and F and let the ratio of the speed of the body E be to that 
of the body F as A is to B; but let the ratio of the time consumed 
by the motion of E be to the time consumed by the motion of 
F as C is to D. Then, I say, that the distance covered by E, with 
speed A in time C, bears to the space traversed by F with speed 

B 
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B in time D a ratio which is the produ& of the ratio of the speed 
A to the speed B by the ratio of the time C to the time D. For 
if G is the distance traversed by E at  speed A during the time- 

interval C, and if G is to I as 
the speed A is to the speed B; E 
and if also the time-interval 
C is to the time-interval D 
as I is to L, then it follows 
that I is the distance trav- 

ersed by F in the same time that G is traversed by E since G 
is to I in the same ratio as the speed A to the speed B. And 
since I is to L in the same ratio as the time-intervals C and D, 
if I is the distance traversed by F during the interval C, then 
L will be the distance traversed by F during the interval D at the 
speed B. 

But the ratio of G to L is the produ& of the ratios G to I 
and I to L, that is, of the ratios of the speed A to the speed B 

A-6- 
C U  

1- 
Lt-----t E=- D- 

Fig. 42 

and of the time-interval C to the time-interval D. Q. E. D. 

b 5 1  
THEOREM V, PROPOSITION V 

If two particles are moved at a uniform rate, but with un- 
equal speeds, through unequal distances, then the ratio of 
the time-intervals occupied will be the product of the ratio 
of the distances by the inverse ratio of the speeds. 

Let the two moving particles be denoted by A and B, and let 
the speed of A be VI-------# C 
to the speed of B in A ,+' , 
the ratio of V to T; 
in like manner let T- G 
the distances trav- * 8- 
ersed be in the ratio 
of S to R; then I say that the ratio of the time-interval during 
which the motion of A occurs to the time-interval occupied by 
the motion of B is the product of the ratio of the speed T to the 
speed V by the ratio of the distance S to the distance R. 

Let C be the time-interval occupied by the motion of A, and 
let 

B 

Fig. 43 
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let the time-interval C bear to a time-interval E the same ratio 
as the speed T to the speed V. 

And since C is the time-interval during which A, with speed 
V, traverses the distance S and since T, the speed of B, is to the 
speed V, as the time-interval C is to the time-interval E, then 
E will be the time required by the particle B to traverse the 
distance S. If now we let the time-interval E be to the time- 
interval G as the distance S is to the distance R, then it follows 
that G is the time required by B to traverse the space R. Since 
the ratio of C to G is the pmduCt of the ratios C to E and E to 
G (while also the ratio of C to E is the inverse ratio of the speeds 
of A and B respedtively, i. e., the ratio of T to V); and since the 
ratio of E to G is the same as that of the distances S and R 
respedtively, the proposition is proved. 

[1961 
THEOREM VI, PROPOSITION VI 

If two particles are carried at  a uniform rate, the ratio of 
their speeds will be the produdt of the ratio of the distances 
traversed by the inverse ratio of the timeintervals occupied. 

Let A and B be the two particles which move at  a uniform 
rate; and let the respettive distances traversed by them have 

to T, but let the & 
as S toR. Then T-. 

of A will bear R 
to the speed of 
B a ratio which is the produCt of the ratio of the distance V to 
the distance T and the time-interval R to the time-interval S. 

Let C be the speed at  which A traverses the distance V during 
the time-interval S; and let the speed C bear the same ratio to 
another speed E as V bears to T; then E will be the speed at 
which B traverses the distance T during the time-interval S. 
If now the speed E is to another speed G as the time-interval R 
is to the time-interval S, then G will be the speed at  which the 

particle 

the ratio of V v C 

time-intervals be $- 

I say the speedfl G 

I 

E 

Fig. 4 
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particle B traverses the distance T during the time-interval R. 
Thus we have the speed C at  which the particle A covers the 
distance V during the time S and also the speed G at which the 
particle B traverses the distance T during the time R. The 
ratio of C to G is the produ& of the ratio C to E and E to G; 
the ratio of C to E is by definition the same as the ratio of the 
distance V to distance T; and the ratio of E to G is the same as 
the ratio of R to S. Hence follows the proposition. 

SALV. The preceding is what our Author has written concern- 
ing unifprm motion. We pass now to a new and more discrim- 
inating consideration of naturally accelerated motion, such as 
that generally experienced by heavy falling bodies; following is 
the title and introduCtion. 

11971 
NATURALLY ACCELERATED MOTION 

The properties belonging to uniform motion have been dis- 
cussed in the preceding section; but accelerated motion remains 
to be considered. 

And first of all it seems desirable to find and explain a defini- 
tion best fitting natural phenomena. For anyone may invent an 
arbitrary type of motion and discuss its properties; thus, for 
instance, some have imagined helices and conchoids as described 
by certain motions which are not met with in nature, and have 
very commendably established the properties which these curves 
possess in virtue of their definitions; but we have decided to con- 
sider the phenomena of bodies falling with an acceleration such 
as aaually occurs in nature and to make this definition of 
accelerated motion exhibit the essential features of observed 
accelerated motions. And this, at  last, after repeated efforts we 
trust we have succeeded in doing. In this belief we are confirmed 
mainly by the consideration that experimental results are seen 
to agree with and exaCtly correspond with those properties 
which have been, one after another, demonstrated by us. 
Finally, in the investigation of naturally accelerated motion we 
were led, by hand as it were, in following the habit and custom of 

nature 
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nature herself, in all her various other processes, to employ 
only those means which are most common, simple and easy. 

For I think no one believes that swimming or flying can be 
accomplished in a manner simpler or easier than that instinc- 
tively employed by fishes and birds. 

When, therefore, I observe a stone initially at  rest falling 
from an elevated position and continually acquiring new in- 
crements of speed, why should I not believe that such increases 
take place in a manner which is exceedingly simple and rather 
obvious to everybody? If now we examine the matter carefully 
we find no addition or increment more simple than that which 
repeats itself always in the same manner. This we readily 
understand when we consider the intimate relationship between 
time and motion; for just as uniformity of motion is defined by 
and conceived through equal times and equal spaces (thus we 
call a motion uniform when equal distances are traversed during 
equal time-intervals), so also we may, in a similar manner, 
through equal time-intervals, conceive additions of speed as 
taking place without complication; thus we may picture to our 

mind a motion as uniformly and continuously accelerated when, 
during any equal intervals of time whatever, equal increments 
of speed are given to it. Thus if any equal intervals of time 
whatever have elapsed, counting from the time at  which the 
moving body left its position of rest and began to descend, the 
amount of speed acquired during the first two time-intervals 
will be double that acquired during the first time-interval 
alone; so the amount zdded during three of these time-intervals 
will be treble; and that in four, quadruple that of the first time- 
interval. To put the matter more clearly, if a body were to 
continue its motion with the same speed which it had acquired 
during the first time-interval and were to retain this same uni- 
form speed, then its motion would be twice as slow as that which 
it would have if its velocity had been acquired during two time- 
intervals. 

And thus, it seems, we shall not be far wrong if we put the 
increment of speed as proportional to the increment of time; 

hence 

[1981 
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hence the definition of motion which we are about to discuss may 
be stated as follows :A motion is said to be uniformly accelerated, 
when starting from rest, it acquires, during equal time-intervals, 
equal increments of speed. 
SAGR. Although I can offer no rational obje&ion to this or 

indeed to any other definition, devised by any author whomso- 
ever, since all definitions are arbitrary, I may nevertheless 
without offense be allowed to doubt whether such a definition as 
the above, established in an abstraR manner, corresponds to and 
describes that kind of accelerated motion which we meet in 
nature in the case of freely falling bodies. And since the Author 
apparently maintains that the motion described in his defini- 
tion is that of freely falling bodies, I would like to clear my 
mind of certain difficulties in order that I may later apply 
myself more earnestly to the propositions and their demon- 
strations. 
SALV. It is well that you and Simplicio raise these difficulties. 

They are, I imagine, the same which occurred to me when I 
first saw this treatise, and which were removed either by discus- 
sion with the Author himself, or by turning the matter over in 
my own mind. 
SAGR. When I think of a heavy body falling from rest, that is, 

starting with zero speed and gaining speed in proportion to the 
[I991 

time from the beginning of the motion; such a motion as would, 
for instance, in eight beats of the pulse acquire eight degrees of 
speed; having a t  the end of the fourth beat acquired four de- 
grees; at  the end of the second, two; a t  the end of the first, one: 
and since time is divisible without limit, it follows from all these 
considerations that if the earlier speed of a body is less than its 
present speed in a constant ratio, then there is no degree of 
speed however small (or, one may say, no degree of slowness 
however great) with which we may not find this body travelling 
after starting from infinite slowness, i. e., from rest. So that if 
that speed which it had at  the end of the fourth beat was such 
that, if kept uniform, the body would traverse two miles in an 
hour, and if keeping the speed which it had a t  the end of the 

second 
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second beat, it would traverse one mile an hour, we must infer 
that, as the instant of starting is more and more nearly a p  
proached, the body moves so slowly that, if it kept on moving at  
this rate, it would not traverse a mile in an hour, or in a day, or 
in a year or in a thousand years; indeed, it would not traverse a 
span in an even greater time; a phenomenon which baffles the 
imagination, while our senses show us that a heavy falling body 
suddenly acquires great speed. 
SALV. This is one of the difficulties which I also a t  the begin- 

ning, experienced, but which I shortly afterwards removed; and 
the removal was effeAed by the very experiment which creates 
the difficulty for you. You say the experiment appears to show 
that immediately after a heavy body starts from rest it acquires 
a very considerable speed: and I say that the same experiment 
makes clear the fa& that the initial motions of a falling body, no 
matter how heavy, are very slow and gentle. Place a heavy 
body upon a yielding material, and leave it there without any 
pressure except that owing to its own weight; it is clear that if 
one lifts this body a cubit or two and allows it to fall upon the 
same material, it will, with this impulse, exert a new and greater 
pressure than that caused by its mere weight; and this effe& is 
brought about by the [weight of the] falling body together with 
the velocity acquired during the fall, an effe& which will be 
greater and greater according to the height of the fall, that is 
according as the velocity of the falling body becomes greater. 
From the quality and intensity of the blow we are thus enabled 
to accurately estimate the speed of a falling body. But tell me, 
gentlemen, is it not true that if a block be allowed to fall upon a 
stake from a height of four cubits and drives it into the earth, 

[zml 
say, four finger-breadths, that coming from a height of two 
cubits it will drive the stake a much less distance, and from the 
height of one cubit a still less distance; and finally if the block be 
lifted only one finger-breadth how much more will it accomplish 
than if merely laid on top of the stake without percussion? 
Certainly very little. If it be lifted only the thickness of a 
leaf, the effe& will be altogether imperceptible. And since the 

eff e& 
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effe& of the blow depends upon the velocity of this striking 
body, can any one doubt the motion is very slow and the speed 
more than small whenever the effect [of the blow] is impercepti- 
ble? See now the power of truth; the same experiment which at  
first glance seemed to show one thing, when more carefully 
examined, assures us of the contrary. 

But without depending upon the above experiment, which is 
doubtless very conclusive, it seems to me that it ought not to 
be difficult to establish such a fact by reasoning alone. Imagine 
a heavy stone held in the air at  rest; the support is removed and 
the stone set free; then since it is heavier than the air it begins to 
fall, and not with uniform motion but slowly at  the beginning 
and with a continuously accelerated motion. Now since velocity 
can be increased and diminished without limit, what reason is 
there to believe that such a moving body starting with infinite 
slowness, that is, from rest, immediately acquires a speed of ten 
degrees rather than one of four, or of two, or of one, or of a 
half, or of a hundredth; or, indeed, of any of the infinite number 
of small values [of speed]? Pray listen. I hardly think you will 
refuse to grant that the gain of speed of the stone falling from 
rest follows the same sequence as the diminution and loss of this 
same speed when, by some impelling force, the stone is thrown to 
its former elevation: but even if you do not grant this, I do not 
see how you can doubt that the ascending stone, diminishing in 
speed, must before coming to rest pass through every possible 
degree of slowness. 

SIMP. But if the number of degrees of greater and greater 
slowness is limitless, they will never be all exhausted, therefore 
such an ascending heavy body will never reach rest, but will 
continue to move without limit always at  a slower rate; but this 
is not the observed fact. 

SALV. This would happen, Simplicio, if the moving body 
were to maintain its speed for any length of time at  each degree 
of velocity; but it merely passes each point without delaying 
more than an instant : and since each time-interval however 

[2011 
small may be divided into an infinite number of instants, these 

will 
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will always be sufficient [in number] to correspond to the infinite 
degrees of diminished velocity. 

That such a heavy rising body does not remain for any length 
of time at  any given degree of velocity is evident from the fol- 
lowing : because if, some time-interval having been assigned, the 
body moves with the same speed in the last as in the first in- 
stant of that time-interval, it could from this second degree of 
elevation be in like manner raised through an equal height, 
just as it was transferred from the first elevation to the second, 
and by the same reasoning would pass from the second to the 
third and would finally continue in uniform motion forever. 

SAGR. From these considerations it appears to me that we 
may obtain a proper solution of the problem discussed by 
philosophers, namely, what causes the acceleration in the 
natural motion of heavy bodies? Since, as it seems to me, the 
force [virtk] impressed by the agent proje&ing the body upwards 
diminishes continuously, this force, so long as it was greater than 
the contrary force of gravitation, impelled the body upwards ; 
when the two are in equilibrium the body ceases to rise and 
passes through the state of rest in which the impressed impetus 
[impeto] is not destroyed, but only its excess over the weight of 
the body has been consumed-the excess which caused the body 
to rise. Then as the diminution of the outside impetus [ i m p 4  
continues, and gravitation gains the upper hand, the fall begins, 
but slowly at  first on account of the opposing impetus [virtu 
imprtsa], a large portion of which still remains in the body; but 
as this continues to diminish it also continues to be more and 
more overcome by gravity, hence the continuous acceleration of 
motion. 

SIMP. The idea is clever, yet more subtle than sound; for even 
if the argument were conclusive, it would explain only the case 
in which a natural motion is preceded by a violent motion, in 
which there still remains a&ive a portion of the external force 
[vi& esternu]; but where there is no such remaining portion and 
the body starts from an antecedent state of rest, the cogency of 
the whole argument fails. 

SAGR. I believe that you are mistaken and that this distinc- 
tion 
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tion between cases which you make is superfluous or rather non- 
existent. But, tell me, cannot a projettile receive from the 
proje&or either a large or a small force [virtG] such as will throw 
it to a height of a hundred cubits, and even twenty or four or 
one? 

b 2 1  
SIMP. Undoubtedly, yes. 
SAGR. So therefore this impressed force [vi& impressa] may 

exceed the resistance of gravity so slightly as to raise it only 
a finger-breadth; and finally the force [vi&] of the projettor 
may be just large enough to exattly balance the resistance of 
gravity so that the body is not lifted at  all but merely sus- 
tained. When one holds a stone in his hand does he do anything 
but give it a force impelling [&tG impellentel it upwards equal 
to the power [fucoltri] of gravity drawing it downwards? And do 
you not continuously impress this force [vi&] upon the stone 
as long as you hold it in the hand? Does it perhaps diminish 
with the time during which one holds the stone? 

And what does it matter whether this support which prevents 
the stone from falling is furnished by one’s hand or by a table 
or by a rope from which it hangs? Certainly nothing a t  all. 
You must conclude, therefore, Simplicio, that it makes no 
difference whatever whether the fall of the stone is preceded by a 
period of rest which is long, short, or instantaneous provided 
only the fall does not take place so long as the stone is a&ed 
upon by a force [vi&] opposed to its weight and sufficient to 
hold it at rest. 

SALV. The present does not seem to be the proper time to 
investigate the cause of the acceleration of natural motion con- 
cerning which various opinions have been expressed by various 
philosophers, some explaining it by attra&ion to the center, 
others to repulsion between the very small parts of the body, 
while still others attribute it to a certain stress in the surrounding 
medium which closes in behind the falling body and drives i t  
from one of its positions to another. Now, all these fantasies, 
and others too, ought to be examined; but it is not really worth 
while. At present it is the purpose of our Author merely to 

investigate 
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investigate and to demonstrate some of the properties of ac- 
celerated motion (whatever the cause of this acceleration may 
be)-meaning thereby a motion, such that the momentum of its 
velocity [i momenti deZla sua veZocit4 goes on increasing after 
departure from rest, in simple proportionality to the time, which 
is the same as saying that in equal time-intervals the body 
receives equal increments of velocity; and if we find the proper- 
ties [of accelerated motion] which will be demonstrated later are 
realized in freely falling and accelerated bodies, we may conclude 
that the assumed definition includes such a motion of falling 
bodies and that their speed [uccele~uzione] goes on increasing as 
the time and the duration of the motion. 

SAGR. So far as I see a t  present, the definition might have 
been put a little more clearly perhaps without changing the 
fundamental idea, namely, uniformly accelerated motion is such 
that its speed increases in proportion to the space traversed; so 
that, for example, the speed acquired by a body in falling four 
cubits would be double that acquired in falling two cubits and 
this latter speed would be double that acquired in the first cubit. 
Because there is no doubt but that a heavy body falling from 
the height of six cubits has, and strikes with, a momentum 
[impeto] double that it had at the end of three cubits, triple that 
which it had at the end of one. 

SALV. It is very comforting to me to have had such a com- 
panion in error; and moreover let me tell you that your proposi- 
tion seems so highly probable that our Author himself admitted, 
when I advanced this opinion to him, that he had for some time 
shared the same fallacy. But what most surprised me was to 
see two propositions so inherently probable that they com- 
manded the assent of everyone to whom they were presented, 
proven in a few simple words to be not only false, but im- 
possible. 

SIMP. I am one of those who accept the proposition, and 
believe that a falling body acquires force [uire~] in its descent, its 
velocity increasing in proportion to the space, and that the 
momentum [momento] of the falling body is doubled when it falls 

from 
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from a doubled height; these propositions, it appears to me, 
ought to be conceded without hesitation or controversy. 

SALV. And yet they are as false and impossible as that motion 
should be completed instantaneously; and here is a very clear 
demonstration of it. If the velocities are in proportion to the 
spaces traversed, or to be traversed, then these spaces are 
traversed in equal intervals of time; if, therefore, the velocity 
with which the falling body traverses a space of eight feet were 
double that with which it covered the first four feet (just as the 
one distance is double the other) then the time-intervals re- 
quired for these passages would be equal. But for one and the 
same body to fall eight feet and four feet in the same time is 
possible only in the case of instantaneous [discontinuous] motion; 

but observation shows us that the motion of a falling body oc- 
cupies time, and less of it in covering a distance of four feet than 
of eight feet; therefore it is not true that its velocity increases in 
proportion to the space. 

The falsity of the other proposition may be shown with equal 
clearness. For if we c0nsider.a single striking body the difference 
of momentum in its blows can depend only upon difference of 
velocity; for if the striking body falling from a double height 
were to deliver a blow of double momentum, it would be neces- 
sary for this body to strike with a doubled velocity; but with 
this doubled speed it would traverse a doubled space in the 
same time-interval; observation however shows that the time 
required for fall from the greater height is longer. 

SAGR. You present these recondite matters with too much 
evidence and ease; this great facility makes them less appre- 
ciated than they would be had they been presented in a more 
abstruse manner. For, in my opinion? people esteem more 
lightly that knowledge which they acquire with so little labor 
than that acquired through long and obscure discussion. 

SALV. If those who demonstrate with brevity and clearness 
the fallacy of many popular beliefs were treated with contempt 
instead of gratitude the injury would be quite bearable; but on 
the other hand it is very unpleasant and annoying to see men, 

who 

[2041 



THIRD DAY 169 
who claim to be peers of anyone in a certain field of study, take 
for granted certain conclusions which later are quickly and 
easily shown by another to be false. I do not describe such a 
feeling as one of envy, which usually degenerates into hatred 
and anger against those who discover such fallacies; I would call 
it  a strong desire to maintain old errors, rather than accept 
newly discovered truths. This desire a t  times induces them to 
unite against these truths, although a t  heart believing in them, 
merely for the purpose of lowering the esteem in which certain 
others are held by the unthinking crowd. Indeed, I have heard 
from our Academician many such fallacies held as true but 
easily refutable; some of these I have in mind. 

SAGR. You must not withhold them from us, but, a t  the 
proper time, tell us about them even though an extra session be 
necessary. But now, continuing the thread of our talk, it  would 

seem that up to the present we have established the definition of 
uniformly accelerated motion which is expressed as follows : 

A motion is said to be equally or uniformly accelerated 
when, starting from rest, its momentum (cel8.ritati.r momenta) 
receives equal increments in equal times. 

SALV. This definition established, the Author makes a single 

The speeds acquired by one and the same body moving 
down planes of different inclinations are equal when the 
heights of these planes are equal. 

By the height of an inclined plane we mean the perpendicular 
let fall from the upper end of the plane upon the horizontal line 
drawn through the lower end of the same plane. Thus, to 
illustrate, let the line AB be horizontal, and let the planes CA 
and CD be inclined to it; then the Author calls the perpendicular 
CB the “height” of the planes CA and CD; he supposes that 
the speeds acquired by one and the same body, descending 
along the planes CA and CD to the terminal points A and D are 
equal since the heights of these planes are the same, CB; and 
also it must be understood that this speed is that which would 
be acquired by the same body falling from C to B. 

Sagr. 

[zosl 

assumption, namely, 
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SAGR. Your assumption appears to me so reasonable that it 

ought to be conceded without question, provided of course there 
are no chance or outside resistances, and that the planes are 

chard and smooth, and that the 
figure of the moving body is per- 
feAly round, so that neither plane 
nor moving body is rough. All re- 
sistance and opposition having 
been removed, my reason tells 

Bme a t  once that a heavy and per- 
feAly round ball descending along 

the lines CA, CD, CB would reach the terminal points A, D, 
B, with equal momenta [impeti egualzl. 

SALV. Your words are very plausible; but I hope by experi- 
ment to increase the probability to an extent which shall be little 
short of a rigid demonstration. 

Imagine this page to represent a vertical wall, with a nail 
driven into it; and from the nail let there be suspended a lead 
bullet of one or two ounces by means of a fine vertical thread, 
AB, say from four to six feet long, on this wall draw a horizontal 
line DC, a t  right angles to the vertical thread AB, which hangs 
about two finger-breadths in front of the wall. Now bring the 
thread AB with the attached ball into the position AC and set it 
free; first it will be observed to descend along the arc CBD, to 
pass the point B, and to travel along the arc BD, till it almost 
reaches the horizontal CD, a slight shortage being caused by the 
resistance of the air and the string; from this we may rightly 
infer that the ball in its descent through the arc CB acquired a 
momentum [impeto] on reaching B, which was just sufficient to 
carry it through a similar arc BD to the same height: Having 
repeated this experiment many times, let us now drive a nail into 
the wall close to the perpendicular AB, say a t  E or F, so that 
it projeAs out some five or six finger-breadths in order that the 
thread, again carrying the bullet through the arc CB, may strike 
upon the nail E when the bullet reaches B, and thus compel it to 
traverse the arc BG, described about E as center. From this 

we 

A A Fig. 45 
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we can see what can be done by the same momentum [impto] 
which previously starting at  the same point B carried the same 
body through the arc BD to the horizontal CD. Now, gentle- 
men, you will observe with pleasure that the ball swings to the 
point G in the horizontal, and you would see the same thing 
happen if the obstacle were placed a t  some lower point, say at  
F, about which the ball would describe the arc BI, the rise of the 

Fig. 46 

ball always terminating exa&ly on the line CD. But when the 
nail is placed so low that the remainder of the thread below it 
will not reach to the height CD (which would happen if the nail 
were placed nearer B than to the interseAion of AB with the 

horizontal CD) then the thread leaps over the nail and twists 
itself about it. 

This experiment leaves no room for doubt as to the truth of 
our supposition; for since the two arcs CB and DB are equal and 
similarly placed, the momentum [momento] acquired by the fall 
through the arc CB is the same as that gained by fall through the 
arc DB; but the momentum [momento] acquired at B, owing to 
fall through CB, is able to lift the same body [mobile] through the 
arc BD; therefore, the momentum acquired in the fall BD is 
equal to that which lifts the same body through the same arc 
from B to D; so, in general, every momentum acquired by fall 

through 
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through an arc is equal to that which can lift the same body 
through the same arc. But all these momenta [mmentzl which 
cause a rise through the arcs BD, BG, and BI are equal, since 
they are produced by the same momentum, gained by fall 
through CB, as experiment shows. Therefore all the momenta 
gained by fall through the arcs DB, GB, IB are equal. 

SAGR. The argument seems to me so conclusive and the ex- 
periment so well adapted to establish the hypothesis that we 
may, indeed, consider it as demonstrated. 

SALV. I do not wish, Sagredq that we trouble ourselves too 
much about this matter, since we are going to apply this principle 
mainly in motions which occur on plane surfaces, and not upon 
curved, along which acceleration varies in a manner greatly 
different from that which we have assumed for planes. 

So that, although the above experiment shows us that the 
descent of the moving body through the arc CB confers upon it 
momentum [momento] just sufficient to carry it to the same 
height through any of the arcs BD, BG, BI, we are not able, by 
similar means, to show that the event would be identical in 
the case of a perfedly round ball descending along planes whose 
inclinations are respedively the same as the chords of these 
arcs. It seems likely, on the other hand, that, since these planes 
form angles at  the point B, they will present an obstacle to the 
ball which has descended along the chord CB, and starts to rise 
along the chord BD, BG, BI. 

In striking these planes some of its momentum [impeto] will 
be lost and it will not be able to rise to the height of the line CD; 
but this obstacle, which interferes with the experiment, once 
removed, it is clear that the momentum [impeto] (which gains 

[2081 
in strength with descent) will be able to carry the body to the 
same height. Let us then, for the present, take this as a pos- 
tulate, the absolute truth of which will be established when we 
find that the inferences from it correspond to and agree per- 
fedtly with experiment. The author having assumed this single 
principle passes next to the propositions which he clearly dem- 
onstrates ; the first of these is as follows : 
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The time in which any space is traversed by a body start- 
ing from rest and uniformly accelerated is equal to the time 
in which that same space would be traversed by the same 
body moving at  a uniform speed whose value is the mean 
of the highest speed and the speed just before acceleration 
began. 

Let us represent by the line AB the time in which the space 
CD is traversed by a body which starts from rest at  C and is 
uniformly accelerated; let the final and highest value of the 
speed gained during the interval AB be represented by the line 
EB drawn at  right angles to AB; draw the line AE, then all 
lines drawn from eauidistant points on AB and parallel to BE 

THEOREM I, PROPOSITION I 

will represent the inireasing vaiues of the speed, 
beginning with the instant A. Let the point F G A 
bise& the line EB; draw FG parallel to BA, 
and GA parallel to FB, thus forming a parallel- 
ogram AGFB which will be equal in area to the 
triangle AEB, since the side GF bise&s the side 
AE a t  the point I; for if the parallel lines in the 
triangle AEB are extended to GI, then the sum 
of all the parallels contained in the quadrilateral 
is equal to the sum of those contained in the tri- 
angle AEB; for those in the triangle IEF are 
equal to those contained in the triangle GIA, 
while those included in the trapezium AIFB are 
common. Since each and every instant of time 
in the time-interval AB has its corresponding: 

1 

point on the line AB, from which poiks pa; 

represent the increasing values of the growing 
velocity, and since parallels contained within the re&angle r e p  
resent the values of a speed which is not increasing, but constant, 
it appears, in like manner, that the momenta [momenta] assumed 
by the moving body may also be represented, in the case of the 
accelerated motion, by the increasing parallels of the triangle 

AEB, 

allels drawn in and limited by the triangle AEB D 
Fig. 47 
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the other, moving with uniform speed, is one-half 
its maximum momentum under accelerated mo- 

THEOREM 11, PROPOSITION I1 
tion. Q. E. D. 

The spaces described by a body falling from rest 
with a uniformly accelerated motion are to each 
other as the squares of the time-intervals em- 
ployed in traversing these distances. 

Let the time beginning with any instant A be rep- 
resented by the straight line AB in which are taken 
any two time-intervals AD and AE. Let HI repre- 
sent the distance through which the body, starting 
from rest a t  H, falls with uniform acceleration. If 
HL represents the space traversed during the time- 
interval AD, and HM that covered during the in- 
terval AE, then the space MH stands to the space B 
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cerned it is precisely the same whether a body falls from rest 
with a uniform acceleration or whether it falls during an equal 
time-interval with a constant speed which is one-half the max- 
imum speed attained during the accelerated motion. It follows 
therefore that the distances HM and HL are the same as would 
be traversed, during the time-intervals AE and AD, by uniform 
velocities equal to one-half those represented by DO and EP 
respe&ively. If, therefore, one can show that the distances 
HM and HL are in the same ratio as the squares of the time- 
intervals AE and AD, our proposition will be proven. 

bI01 
But in the fourth proposition of the first book [p. 157 above] 

it has been shown that the spaces traversed by two particles in 
uniform motion bear to one another a ratio which is equal to the 
produe of the ratio of the velocities by the ratio of the times. 
But in this case the ratio of the velocities is the same as the ratio 
of the time-intervals (for the ratio of AE to AD is the same as 
that of j4 EP to DO or of EP to DO). Hence the ratio of the 
spaces traversed is the same as the squared ratio of the time- 

Evidently then the ratio of the distances is the square of the 
ratio of the final velocities, that is, of the lines EP and DO, since 
these are to each other as AE to AD. 

intervals. Q. E. D. 

COROLLARY I 
Hence it is clear that if we take any equal intervals of time 

whatever, counting from the beginning of the motion, such as 
AD, DE, EF, FG, in which the spaces HL, LM, MN, NI are 
traversed, these spaces will bear to one another the same ratio 
as the series of odd numbers, I, 3,5,7; for this is the ratio of the 
differences of the squares of the lines [which represent time], 
differences which exceed one another by equal amounts, this 
excess being equal to the smallest line [viz. the one representing a 
single time-interval] : or we may say [that this is the ratio] of the 
differences of the squares of the natural numbers beginning with 
unity. 

While, 
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While, therefore, during equal intervals of time the velocities 

increase as the natural numbers, the increments in the distances 
traversed during these equal time-intervals are to one another as 
the odd numbers beginning with unity. 

SAGR. Please suspend the discussion for a moment since there 
just occurs to me an idea which I want to illustrate by means 
of a diagram in order that it may be clearer both to you and 
to me. 

Let the line AI represent the lapse of time measured from the 
initial instant A; through A draw the straight line AF making 

A any angle whatever; join the terminal 
points I and F; divide the time AI in half 
a t  C; draw CB parallel to IF. Let us 
consider CB as the maximum value of 
the velocity which increases from zero 
at  the beginning, in simple proportion- 
ality to the intercepts on the triangle 
ABC of lines drawn parallel to BC; or 
what is the same thing, let us suppose the 
velocity to increase in proportion to the 
time; then I admit without question, in 
view of the preceding argument, that the 
space described by a body falling in the 
aforesaid manner will be equal to the 
space traversed by the same body during 
the same length of time travelling with a 
uniform speed equal to EC, the half of 

p R e  0 BC. Further let us imagine that the 

body has fallen with accelerated motion so that, a t  the in- 
stant C, it has the velocity BC. It is clear that if the body 
continued to descend with the same speed BC, without ac- 
celeration, it would in the next time-interval CI traverse 
double the distance covered during the interval AC, with the 
uniform speed EC which is half of BC; but since the falling body 
acquires equal increments of speed during equal increments of 
time, it follows that the velocity BC, during the next time- 

interval 

Fig. 49 [21 I1 
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interval, CI will be increased by an amount represented by the 
parallels of the triangle BFG which is equal to the triangle ABC. 
If, then, one adds to the velocity GI half of the velocity FG, the 
highest speed acquired by the accelerated motion and deter- 
mined by the parallels of the triangle BFG, he will have the 
uniform velocity with which the same space would have been 
described in the time CI; and since this speed IN is three times 
as great as EC it follows that the space described during the in- 
terval CI is three times as great as that described during the inter- 
val AC. Let us imagine the motion extended over another equal 
time-interval IO, and the triangle extended to APO; it is then 
evident that if the motion continues during the interval IO, at  
the constant rate IF acquired by acceleration during the time AI, 
the space traversed during the interval IO will be four times that 
traversed during the first in:erval AC, because the speed IF is 
four times the speed EC. But if we enlarge our triangle so as to 
include FPQ which is equal to ABC, still assuming the accelera- 
tion to be constant, we shall add to the uniform speed an incre- 
ment RQ, equal to EC; then the value of the equivalent uniform 
speed during the time-interval IO will be five times that during 
the first time-interval AC; therefore the space traversed will be 
quintuple that during the first interval AC. It is thus evident 
by simple computation that a moving body starting from rest 
and acquiring velocity a t  a rate proportional to the time, will, 
during equal intervals of time, traverse distances which are 
related to each other as the odd numbers beginning with unity, 
I, 3, 5 ;  * or considering the total space traversed, that covered 

[212[ 
in double time will be quadruple that covered during unit time; 
in triple time, the space is nine times as great as in unit time. 

* As illustrating the greater elegance and brevity of modern analytical 
methods, one may obtain the result of Prop. I1 directly from the fun- 
damental equation 

where g is the acceleration of gravity and J, the space traversed between 
the instants tl and t2. If now t2 - tl = I ,  say one second then s = g/2 (tz  + t l )  
where t z+ t l ,  must always be an odd number, seeing that it is the sum of 
two consecutive terms in the series of natural numbers. 

J- = '/z g (t22 - t21) = g/z (tz + tl) ( t z  - tl) 

[Truns.] 
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And in general the spaces traversed are in the duplicate ratio of 
the times, i. e., in the ratio of the squares of the times. 

SIMP. In  truth, I find more pleasure in this simple and clear 
argument of Sagredo than in the Author’s demonstration which 
to me appears rather obscure; so that I am convinced that 
matters are as described, once having accepted the definition of 
uniformly accelerated motion. But as to whether this accelera- 
tion is that which one meets in nature in the case of falling 
bodies, I am still doubtful; and it seems to me, not only for my 
own sake but also for all those who think as I do, that this 
would be the proper moment to introduce one of those experi- 
ments-and there are many of them, I understand-which 
illustrate in several ways the conclusions reached. 

SAW. The request which you, as a man of science, make, is a 
very reasonable one; for this is the custom-and properly so- 
in those sciences where mathematical demonstrations are applied 
to natural phenomena, as is seen in the case of perspe&ive, 
astronomy, mechanics, music, and others where the principles, 
once established by well-chosen experiments, become the founda- 
tions of the entire superstru&ure. I hope therefore it will not 
appear to be a waste of time if we discuss at  considerable length 
this first and most fundamental question upon which hinge 
numerous consequences of which we have in this book only a 
small number, placed there by the Author, who has done so 
much to open a pathway hitherto closed to minds of speculative 
turn. So far as experiments go they have not been negleCted 
by the Author; and often, in his company, I have attempted in 
the following manner to assure myself that the acceleration 
a&ually experienced by falling bodies is that above described. 

A piece of wooden moulding or scantling, about 12 cubits 
long, half a cubit wide, and three finger-breadths thick, was 
taken; on its edge was cut a channel a little more than one 
finger in breadth; having made this groove very straight, smooth, 
and polished, and having lined it with parchment, also as 
smooth and polished as possible, we rolled along it a hard, 
smooth, and very round bronze ball. Having placed this 

board 
bI31 
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board in a sloping position, by lifting one end some one or two 
cubits above the other, we rolled the ball, as I was just saying, 
along the channel, noting, in a manner presently to be described, 
the time required to make the descent. We repeated this ex- 
periment more than once in order to measure the time with an 
accuracy such that the deviation between two observations 
never exceeded one-tenth of a pulse-beat. Having performed 
this operation and having assured ourselves of its reliability, we 
now rolled the ball only one-quarter the length of the channel; 
and having measured the time of its descent, we found it pre- 
cisely one-halfof the former. Next we tried other distances, com- 
paring the time for the whole length with that for the half, or with 
that for two-thirds, or three-fourth, or indeed for any fracition; 
in such experiments, repeated a full hundred times, we always 
found that the spaces traversed were to each other as the squares 
of the times, and this was true for all inclinations of the plane, 
i. e., of the channel, along which we rolled the ball. We also 
observed that the times of descent, for various inclinations of the 
plane, bore to one another precisely that ratio which, as we shall 
see later, the Author had predicited and demonstrated for them. 

For the measurement of time, we employed a large vessel of 
water placed in an elevated position; to the bottom of this 
vessel was soldered a pipe of small diameter giving a thin jet of 
water, which we collecited in a small glass during the time of each 
descent, whether for the whole length of the channel or for a part 
of its length; the water thus collecited was weighed, after each 
descent, on a very accurate balance; the differences and ratios of 
these weights gave us the differences and ratios of the times, and 
this with such accuracy that although the operation was re- 
peated many, many times, there was no appreciable discrepancy 
in the results. 

SIMP. I would like to have been present a t  these experiments; 
but feeling confidence in the care with which you performed 
them, and in the fidelity with which you relate them, I am 
satisfied and accept them as true and valid 

SALV. Then we can proceed without discussion. 
b141 
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COROLLARY I1 

Secondly, it  follows that, starting from any initial point, if we 
rake any two distances, traversed in any time-intenrals whatso- 

9 ever, these time-intervals bear to one another the same 
ratio as one of the distances to the mean proportional of 
the two distances. 

For if we take two distances ST and SY measured from 
the initial point S, the mean proportional of which is SX, 
the time of fall through ST is to the time of fall through 

x SY as ST is to SX; or one may say the time of fall through 
SY is to the time of fall through ST as SY is to SX. Now 
since it has been shown that the spaces traversed are in l Y the same ratio as the squares of the times; and since, more- 

Fig-Pover, the ratio of the space SY to the space ST is the 
square of the ratio SY to SX, it follows that the ratio of the 
times of fall through SY and ST is the ratio of the respedtive 
distances SY and SX. 

I 

SCHOLIUM 
The above corollary has been proven for the case of vertical 

fall; but it holds also for planes inclined a t  any angle;.for it is to 
be assumed that along these planes the velocity increases in the 
same ratio, that is, in proportion to the time, or, if you prefer, as 
the series of natural numbers.* 

SALV. Here, Sagredo, I should like, if i t  be not too tedious to 
Simplicio, to interrupt for a moment the present discussion in 
order to make some additions on the basis of what has already 
been proved and of what mechanical principles we have already 
learned from our Academician. This addition I make for the 
better establishment on logical and experimental grounds, of the 
principle which we have above considered; and what is more 
important, for the purpose of deriving i t  geometrically, after first 
demonstrating a single lemma which is fundamental in the science 
of motion [impeti]. 

* The dialogue which intervenes between this Scholium and the follow- 
ing theorem was elaborated by Viviani, a t  the suggestion of Galileo. 
See National Edition, viii, 23. [Trans.] 
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SAGR. If the advance which you propose to make is such as 

will confirm and fully establish these sciences of motion, I will 
gladly devote to i t  any length of time. Indeed, I shall not only 

be glad to have you proceed, but I beg of you a t  once to satisfy 
the curiosity which you have awakened in me concerning your 
proposition; and I think that Simplicio is of the same mind. 

SIMP. Quite right. 
SALV. Since then I have your permission, let us first of all con- 

sider this notable fa&, that the momenta or speeds [i momenti o le 
velocitu] of one and the same moving body vary with the inclina- 
tion of the plane. 

The speed reaches a maximum along a vertical diredtion, and 
for other dire&ions diminishes as the plane diverges from the 
vertical. Therefore the impetus, ability, energy, [Z’impeto, il 
talento, Z’energia] or, one might say, the momentum [il momento] 
of descent of the moving body is diminished by the plane upon 
which it is supported and along which it rolls. 

For the sake of greater clearness ere& the line AB perpendicular 
to the horizontal AC; next draw AD, AE, AF, etc., a t  different 
inclinations to the horizontal. Then I say that all the momentum 
of the falling body is along the vertical and is a maximum when it 
falls in that dire&ion; the momentum is less along DA and still 
less along EA, and even less yet along the more inclined plane FA. 
Finally on the horizontal plane the mo- 

no resistance to being set in motion. For F 
just as a heavy body or system of bodies &J ***a. 

mentum vanishes altogether; the body 
finds itself in a condition of indifference 
as to motion or rest; has no inherent tend- 
ency to move in any diredlion, and offers 

cannot of itself move upwards, or recede 
from the common center [comun centro] 
toward which all heavy things tend, so it 
is impossible for any body of its own ac- 
cord to assume. any motion other than 
one which carries it nearer to the aforesaid common center. 
Hence, along the horizontal, by which we understand a surface, 
every point of which is equidistant from this same common center, 
the body will have no momentum whatever. 

This 
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ALVIATI. Once more, Simplicio is here on 
time; so let us without delay take up the 
question of motion. The text of our Author 
is as follows: 

THE MOTION OF PROJECTILES 

In the preceding pages we have discussed the 
properties of uniform motion and of motion naturally accel- 
erated along planes of all inclinations. I now propose to set 
forth those properties which belong to a body whose motion is 
compounded of two other motions, namely, one uniform and one 
naturally accelerated; these properties, well worth knowing, I 
propose to demonstrate in a rigid manner. This is the kind of 
motion seen in a moving projektile; its origin I conceive to be as 
follows : 

Imagine any particle projetted along a horizontal plane with- 
out fridtion; then we know, from what has been more fully 
explained in the preceding pages, that this particle will move 
along this same plane with a motion which is uniform and 
perpetual, provided the plane has no limits. But if the plane is 
limited and elevated, then the moving particle, which we imag- 
ine to be a heavy one, will on passing over the edge of the plane 
acquire, in addition to its previous uniform and perpetual 
motion, a downward propensity due to its own weight; so that 
the resulting motion which I call projeCtion [projcctio], is com- 
pounded of one which is uniform and horizontal and of another 
which is vertical and naturally accelerated. We now proceed to 

demonstrate 
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demonstrate some of its properties, the first of which is as fol- 
lows : 

b691 
THEOREM I, PROPOSITION I 

A projeCti1e which is carried by a uniform horizontal motion 
compounded with a naturally accelerated vertical motion 
describes a path which is a semi-parabola. 

SAGR. Here, Salviati, it will be necessary to stop a little 
while for my sake and, I believe, also for the benefit of Sim- 
plicio; for it so happens that I have not gone very far in my 
study of Apollonius and am merely aware of the fact that he 
treats of the parabola and other conic sedlions, without an un- 
derstanding of which I hardly think one will be able to follow 
the proof of other propositions depending upon them. Since 
even in this first beautiful theorem the author finds it necessary 
to prove that the path of a projedtile is a parabola, and since, as 
I imagine, we shall have to deal with only this kind of curves, 
it will be absolutely necessary to have a thorough acquaintance, 
if not with all the properties which Apollonius has demonstrated 
for these figures, at  least with those which are needed for the 
present treatment. 

SALV. You are quite too modest, pretending ignorance of 
fans  which not long ago you acknowledged as well known-I 
mean at  the time when we were discussing the strength of 
materials and needed to use a certain theorem of Apollonius 
which gave you no trouble. 

SAGR. I may have chanced to know it or may possibly have 
assumed it, so long as needed, for that discussion; but now when 
we have to follow all these demonstrations about such curves we 
ought not, as they say, to swallow it whole, and thus waste time 
and energy. 

SIMP. Now even though Sagredo is, as I believe, well equipped 
for all his needs, I do not understand even the elementary terms; 
for although our philosophers have treated the motion of pro- 
jedtiles, I do not recall their having described the path of a 
projeftile except to state in a general way that it is always a 

curved 
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curved line, unless the projedtion be vertically upwards. But 

if the little Euclid which I have learned since our previous dis- 
cus~ion does not enable me to understand the demonstrations 
which are to follow, then I shall be obliged to accept the the- 
orems on faith without fully comprehending them. 

SALV. On the contrary, I desire that you should understand 
them from the Author himself, who, when he allowed me to see 
this work of his, was good enough to prove for me two of the 
principal properties of the parabola because I did not happen to 
have a t  hand the books of Apollonius. These properties, which 
are the only ones we shall need in the present discussion, he 
proved in such a way that no prerequisite knowledge was re- 
quired. These theorems are, indeed, given by Apollonius, but 
after many preceding ones, to follow which would take a long 
while. I wish to shorten Dur task by deriving the first property 

purely and simply from the mode of gen- 
eration of the parabola and proving the 
second immediately from the first. 

Beginning now with the first, imagine 
a right cone, eredted upon the circular 
base ibkc with apex at  1. The sedtion of 
this cone made by a plane drawn parallel 
to the side lk is the curve which is called 
a parabola. The base of this parabola bc 
cuts a t  right angles the diameter ik of the 
circle ibkc, and the axis ad is parallel to 
the side Lk; now having taken any point f 
in the curve bfa draw the straight line fe 
parallel to bd; then, I say, the square 

of bd is to the square of fe in the same ratio as the axis ad 
is to the portion ae. Through the point e pass a plane parallel 
to the circle ibkc, producing in the cone a circular seAion whose 
diameter is the line geh. Since bd is a t  right angles to ik in the 
circle ibk, the square of bd is equal to the redtangle formed by id 
and dk; so also in the upper circle which passes through the 
points gfh the square of fe is equal to the redtangle formed by 

ge 

h o l  

i 

Fig. 106 
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ge and eh; hence the square of bd is to the square of fe as the 
redtangle id.dk is to the redtangle ge.eh. And since the line ed is 
parallel to hk, the line eh, being parallel to dk, is equal to it; 
therefore the re&ngle id.dk is to the redtangle ge.eh as id is to 

ge, that is, as du is to ae; whence also the redtangle id.dk is to the 
redtangle ge.eh, that is, the square of bd is to the square of fe, as 

The other proposition necessary for this discussion we demon- 
strate as follows. Let us draw a parabola whose axis cu is pro- 
longed upwards to a point d; from any point b draw the line bc 
parallel to the base of the parabola; if now the point d is chosen 
so that du = ca. then. I sav. the 

[zv l  

the axis du is to the portion ae. Q. E. D. 

straight line diawn h rou ih  the 
points b and d will be tangent to 
the parabola a t  b. For imagine, if 
possible, that this line cuts the par- 
abola above or that its prolonga- 
tion cuts it below, and through any 
point g in it draw the straight line 
fge. And since the square of fe is 
greater than the square of ge, the 
square of fe will bear a greater ratio 
to the square of bc than the square 
of ge to that of bc; and since, by the 
preceding proposition, the square 
of fe is to that of bc as the line ea is 
to cu. it follows that the line ea 

a 

will bear to the line cu a greater 
ratio than the square of ge to that 
of bc, or, than the square of ed to 
that of cd (the sides of the triangles 
deg and dcb being proportional). 
But the line ea is to ca, or du, in the same ratio as four times the 
redtangle ea.& is to four times the square of ad, or, what is the 
same, the square of cd, since this is four times the square of ad; 
hence four times the redkangle ea.& bears to the square of cd 

a 

Fig. 107 
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a greater ratio than the square of ed to the square of cd; but 
that would make four times the rectangle ea.& greater than 
the square of ed; which is false, the fa& being just the oppo- 
site, because the two portions ea and ad of the line ed are not 
equal. Therefore the line db touches the parabola without 

SIMP. Your demonstration proceeds too rapidly and, it seems 
to me, you keep on assuming that all of Euclid’s theorems are 

b721 
as familiar and available to me as his first axioms, which is 
far from true. And now this fact which you spring upon us, 
that four times the redtangle ea.ad is less than the square of 
de because the two portions ea and ad of the line de are not 
equal brings me little composure of mind, but rather leaves me 
in suspense. 

SALV. Indeed, all real mathematicians assume on the part of 
the reader perfect familiarity with a t  least the elements of 
Euclid; and here it is necessary in your case only to recall a 
proposition of the Second Book in which he proves that when a 
line is cut into equal and also into two unequal parts, the rec- 
tangle formed on the unequal parts is less than that formed 
on the equal (i. e., less than the square on half the line), by an 
amount which is the square of the difference between the equal 
and unequal segments. From this it is clear that the square of 
the whole line which is equal to four times the square of the 
half is greater than four times the rectangle of the unequal 
parts. In order to understand the following portions of this 
treatise it will be necessary to keep in mind the two elemental 
theorems from conic sections which we have just demonstrated; 
and these two theorems are indeed the only ones which the 
Author uses. We can now resume the text and see how he 
demonstrates his first proposition in which he shows that a 
body falling with a motion compounded of a uniform horizontal 
and a naturally accelerated [naturale descendentel one describes 
a semi-parabola. 

Let us imagine an elevated horizontal line or plane ab along 
which a body moves with uniform speed from a to b. Suppose 

this 

cutting it. Q. E. D. 
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this plane to end abruptly at  b; then at  this point the body will, 
on account of its weight, acquire also a natural motion down- 
wards along the perpendicular bn. Draw the line be along the 
plane bu to represent the flow, or measure, of time; divide this 
line into a number of segments, bc, cd, de, representing equal 
intervals of time; from the points b, c, d ,  e, let fall lines which are 
parallel to the per- 
pendicular bn. On the - 
first of these lay off 
any distance ci, on the 
second a distance four 
times as - -  long, df; on 

12731 
the third. one nine 
times as long, eh; and 
so on, in proportion to 
the squares of cb, db, 
eb, or, we may say, in 
the sauared ratio of thc-3 same lines. 

e. a a 

.I 

16 

I I  
Fig. 108 
Accordinrrlv we see that 

while the body moves from b to c with uniform spiid, it also falls 
perpendicularly through the distance ci, and at  the end of the 
time-interval bc finds itself a t  the point i. In like manner at  the 
end of the time-interval bd, which is the double of bc, the vertical 
fall will be four times the first distance ci; for it has been shown 
in a previous discussion that the distance traversed by a freely 
falling body varies as the square of the time; in like manner the 
space eh traversed during the time be will be nine times ci; 
thus it is evident that the distances eh, df, ci will be to one 
another as the squares of the lines be, bd, bc. Now from the 
points i, f ,  h draw the straight lines io, fg, hl parallel to be; these 
lines hl, fg, io are equal to eb, db and cb, respe&ively; so also are 
the lines bo, bg, bl respettively equal to ci, df, and eh. The square 
of hl is to that of f g  as the line lb is to bg; and the square of f g  is 
to that of io as gb is to bo; therefore the points i, f, h, lie on one 
and the same parabola. In like manner it may be shown that, 
if we take equal time-intervals of any size whatever, and if we 
imagine the particle to be carried by a similar compound motion, 

the 
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the positions of this particle, a t  the ends of these time-intervals, 

SALV. This conclusion follows from the converse of the first 
of the two propositions given above. For, having drawn a 
parabola through the points b and h, any other two points, f and 
i, not falling on the parabola must lie either within or without; 
consequently the linefg is either longer or shorter than the line 
which terminates on the parabola. Therefore the square of hl 
will not bear to the square of fg the same ratio as the line Zb to 
bg, but a greater or smaller; the fact is, however, that the square 
of hl does bear this same ratio to the square of fg. Hence the 
pointf does lie on the parabola, and so do all the others. 

SAGR. One cannot deny that the argument is new, subtle and 
conclusive, resting as it does upon this hypothesis, namely, 
that the horizontal motion remains uniform, that the vertical 
motion continues to be accelerated downwards in proportion to 
the square of the time, and that such motions and velocities as 
these combine without altering, disturbing, or hindering each 
other,* so that as the motion proceeds the path of the projeCtile 
does not change into a different curve: but this, in my opinion, 

is impossible. For the axis of the parabola along which we 
imagine the natural motion of a falling body to take place stands 
perpendicular to a horizontal surface and ends a t  the center of 
the earth; and since the parabola deviates more and more from 
its axis no projettile can ever reach the center of the earth or, if 
it does, as seems necessary, then the path of the projeCtile must 
transform itself into some other curve very different from the 
parabola. 

SIMP. To these difficulties, I may add others. One of these is 
that we suppose the horizontal plane, which slopes neither up 
nor down, to be represented by a straight line as if each point on 
this line were equally distant from the center, which is not the 
case; for as one starts from the middle [of the line] and goes 
toward either end, he departs farther and farther from the 
center [of the earth] and is therefore constantly going uphill. 
Whence it follows that the motion cannot remain uniform 

* A very near approach to Newton’s Second Law of Motion. [Trans.] 

will lie on one and the same parabola. Q. E. D. 
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through any distance whatever, but must continually diminish. 
Besides, I do not see how it is possible to avoid the resistance of 
the medium which must destroy the uniformity of the horizon- 
tal motion and change the law of acceleration of falling bodies. 
These various difficulties render it highly improbable that a 
result derived from such unreliable hypotheses should hold true 
in pra&ice. 
SALV. All these difficulties and obje&ions which you urge 

are so well founded that it is impossible to remove them; and, 
as for me, I am ready to admit them all, which indeed I think 
our Author would also do. I grant that these conclusions proved 
in the abstraR will be different when applied in the concrete 
and will be fallacious to this extent, that neither will the horizon- 
tal motion be uniform nor the natural acceleration be in the 
ratio assumed, nor the path of the projedtile a parabola, etc. 
But, on the other hand, I ask you not to begrudge our Author 
that which other eminent men have assumed even if not stri&ly 
true. The authority of Archimedes alone will satisfy everybody. 
In his Mechanics and in his first quadrature of the parabola he 
takes for granted that the beam of a balance or steelyard is a 
str.aight line, every point of which is equidistant from the 
common center of all heavy bodies, and that the cords by which 
heavy bodies are suspended are parallel to each other. 

Some consider this assumption permissible because, in prac- 
tice, our instruments and the distances involved are so small in 
comparison with the enormous distance from the center of the 
earth that we may consider a minute of arc on a great circle as a 
straight line, and may regard the perpendiculars let fall from its 
two extremities as parallel. For if in a h a 1  praRice one had to 

consider such small quantities, it  would be necessary first of all 
to criticise the architedts who presume, by use of a plumbline, to 
ere& high towers with parallel sides. I may add that, in all 
their discussions, Archimedes and the others considered them- 
selves as located a t  an infinite distance from the center of the 
earth, in which case their assumptions were not false, and 
therefore their conclusions were absolutely correct. When we 

wish 
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wish to apply our proven conclusions to distances which, though 
finite, are very large, it is necessary for us to infer, on the basis of 
demonstrated truth, what corre&ion is to be made for the fa& 
that our distance from the center of the earth is not really 
infinite, but merely very great in comparison with the small 
dimensions of our apparatus. The largest of these will be the 
range of our proje&iles-and even here we need consider only 
the artillery-which, however great, will never exceed four of 
those miles of which as many thousand separate us from the 
center of the earth; and since these paths terminate upon the 
surface of the earth only very slight changes can take place in 
their parabolic figure which, it is conceded, would be greatly 
altered if they terminated a t  the center of the earth. 

As to the perturbation arising from the resistance of the 
medium this is more considerable and does not, on account of its 
manifold forms, submit to k e d  laws and exa& description. 
Thus if we consider only the resistance which the air offers to the 
motions studied by us, we shall see that it disturbs them all and 
disturbs them in an infinite variety of ways corresponding to the 
infinite variety in the form, weight, and velocity of the pro- 
je&iles. For as to velocity, the greater this is, the greater will 
be the resistance offered by the air; a resistance which will be 
greater as the moving bodies become less dense [men graetz]. 
So that although the falling body ought to be displaced [andare 
accelerundosi] in proportion to the square of the duration of its 
motion, yet no matter how heavy the body, if it falls from a 
very considerable height, the resistance of the air will be such as 
to prevent any increase in speed and will render the motion 

uniform; and in proportion as the moving body is less dense 
[men graue] this uniformity will be so much the more quickly 
attained and after a shorter fall. Even horizontal motion which, 
if no impediment were offered, would be uniform and constant is 
altered by the resistance of the air and finally ceases; and here 
again the less dense [piu leggier01 the body the quicker the 
process. Of these properties [accidentz] of weight, of velocity, 
and also of form [jguru], infinite in number, it is not possible to 

give 
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give any exa& description; hence, in order to handle this matter 
in a scientific way, it is necessary to cut loose from these difficul- 
ties; and having discovered and demonstrated the theorems, in 
the case of no resistance, to use them and apply them with such 
limitations as experience will teach. And the advantage of this 
method will not be small; for the material and shape of the 
proje&ile may be chosen, as dense and round as possible, so 
that it will encounter the least resistance in the medium. Nor 
will the spaces and velocities in general be so great but that we 
shall be easily able to corre& them with precision. 

In the case of those proje&iles which we use, made of dense 
[grave] material and round in shape, or of lighter material and 
cylindrical in shape, such as arrows, thrown from a sling or 
crossbow, the deviation from an exa& parabolic path is quite 
insensible. Indeed, if you will allow me a little greater liberty, 
I can show you, by two experiments, that the dimensions of our 
apparatus are so small that these external and incidental re- 
sistances, among which that of the medium is the most con- 
siderable, are scarcely observable. 

I now proceed to the consideration of motions through the 
air, since it is with these that we are now especially concerned; 
the resistance of the air exhibits itself in two ways: first by 
offering greater impedance to less dense than to very dense 
bodies, and secondly by offering greater resistance to a body in 
rapid motion than to the same body in slow motion. 

Regarding the first of these, consider the case of two balls 
having the same dimensions, but one weighing ten or twelve 
times as much as the other; one, say, of lead, the other of oak, 
both allowed to fall from an elevation of 150 or zoo cubits. 

Experiment shows that they will reach the earth with slight 
difference in speed, showing us that in both cases the retardation 
caused by the air is small; for if both balls start a t  the same 
moment and a t  the same elevation, and if the leaden one be 
slightly retarded and the wooden one greatly retarded, then the 
former ought to reach the earth a considerable distance in 
advance of the latter, since it is ten times as heavy. But this 

does 
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does not happen; indeed, the gain in distance of one over the 
other does not amount to the hundredth part of the entire fall. 
And in the case of a ball of stone weighing only a third or half as 
much as one of lead, the difference in their times of reaching the 
earth will be scarcely noticeable. Now since the speed [impto] 
acquired by a leaden ball in falling from a height of ZOO cubits is 
so great that if the motion remained uniform the ball would, in 
an interval of time equal to that of the fall, traverse 400 cubits, 
and since this speed is so considerable in comparison with those 
which, by use of bows or other machines except fire arms, we are 
able to give to our proje&iles, it follows that we may, without 
sensible error, regard as absolutely true those propositions which 
we are about to prove without considering the resistance of the 
medium. 

Passing now to the second case, where we have to show that 
the resistance of the air for a rapidly moving body is not very 
much greater than for one moving slowly, ample proof is given 
by the following experiment. Attach to two threads of equal 
length-say four or five yards-two equal leaden balls and 
suspend them from the ceiling; now pull them aside from the 
perpendicular, the one through 80 or more degrees, the other 
through not more than four or five degrees; so that, when set 
free, the one falls, passes through the perpendicular, and de- 
scribes large but slowly decreasing arcs of 160, 150, 140 degrees, 
etc. ; the other swinging through small and also slowly diminish- 
ing arcs of IO, 8,6, degrees, etc. 

In the first place it must be remarked that one pendulum 
passes through its arcs of I~o", I&", etc., in the same time that 
the other swings through its IO", 8", etc., from which it follows 
that the speed of the first ball is 16 and 18 times greater than 
that of the second. Accordingly, if the air offers more resistance 
to the high speed than to the low, the frequency of vibration in 
the large arcs of 180" or I&", etc., ought to be less than in the 
small arcs of IO", 8", 4", etc., and even less than in arcs of 2", or 
1'; but this prediction is not verified by experiment; because if 
two persons start to count the vibrations, the one the large, the 
other the small, they will discover that after counting tens 
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differ by a single vibration, 

[2781 
This observation justifies the two following propositions, 

namely, that vibrations of very large and very small amplitude 
all occupy the same time and that the resistance of the air 
does not affett motions of high speed more than those of low 
speed, contrary to the opinion hitherto generally entertained. 

SAGR. On the contrary, since we cannot deny that the air 
hinders both of these motions, both becoming slower and finally 
vanishing, we have to admit that the retardation occurs in the 
same proportion in each case. But how? How, indeed, could 
the resistance offered to the one body be greater than that 
offered to the other except by the impartation of more momen- 
tum and speed [impeto e velociti] to the fast body than to the 
slow? And if this is so the speed with which a body moves is a t  
once the cause and measure [cugione e misuru] of the resistance 
which it meets. Therefore, all motions, fast or slow, are hin- 
dered and diminished in the same proportion; a result, it seems 
to me, of no small importance. 

SALV. We are able, therefore, in this second case to say that 
the errors, negletting those which are accidental, in the results 
which we are about to demonstrate are small in the case of our 
machines where the velocities employed are mostly very great 
and the distances negligible in comparison with the semi- 
diameter of the earth or one of its great circles. 

SIMP. I would like to hear your reason for putting the pro- 
jettiles of fire arms, i. e., those using powder, in a different class 
from the projettiles employed in bows, slings, and crossbows, on 
the ground of their not being equally subjett to change and 
resistance from the air. 

SALV. I am led to this view by the excessive and, so to speak, 
supernatural violence with which such projettiles are launched; 
for, indeed, it appears to me that without exaggeration one might 
say that the speed of a ball fired either from a musket or from 
a piece of ordnance is supernatural. For if such a ball be allowed 
to fall from some great elevation its speed will, owing to the 
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resistance of the air, not go on increasing indefinitely; that which 
happens to bodies of small density in falling through short 
distances-I mean the reduCtion of their motion to uniformity- 
will also happen to a ball of iron or lead after it has fallen a few 
thousand cubits; this terminal or final speed [temninata veZocitii] 
is the maximum which such a heavy body can naturally acquire 

in falling through the air. This speed I estimate to be much 
smaller than that impressed upon the ball by the burning pow- 
der. 

An appropriate experiment will serve to demonstrate this 
fa&. From a height of one hundred or more cubits fire a gun 
[archibuso] loaded with a lead bullet, vertically downwards 
upon a stone pavement; with the same gun shoot against a 
similar stone from a distance of one or two cubits, and observe 
which of the two balls is the more flattened. Now if the ball 
which has come from the greater elevation is found to be the 
less flattened of the two, this will show that the air has hin- 
dered and diminished the speed initially imparted to the bullet 
by the powder, and that the air will not permit a bullet to ac- 
quire so great a speed, no matter from what height it falls; for if 
the speed impressed upon the ball by the fire does not exceed 
that acquired by it in falling freely [naturalmente] then its down- 
ward blow ought to be greater rather than less. 

This experiment I have not performed, but I am of the opinion 
that a musket-ball or cannon-shot, falling from a height as 
great as you please, will not deliver so strong a blow as it would 
if fired into a wall only a few cubits distant, i. e., a t  such a short 
range that the splitting or rendicg of the air will not be sufficient 
to rob the shot of that excess of supernatural violence given it by 
the powder. 

The enormous momentum [impeto] of these violent shots may 
cause some deformation of the trajeCtory, making the beginning 
of the parabola flatter and less curved than the end; but, so far as 
our Author is concerned, this is a matter of small consequence 
in pradtical operations, the main one of which is the preparation 
of a table of ranges for shots of high elevation, giving the dis- 

tance 
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tance attained by the ball as a funtkion of the angle of eleva- 
tion; and since shots of this kind are fired from mortars [mortarz] 
using small charges and imparting no supernatural momentum 
[impeto sopranaturale] they follow their prescribed paths very 
exaely. 

But now let us proceed with the discussion in which the 
Author invites us to the study and investigation of the motion 
of a body [impeto del mobile] when that motion is compounded of 
two others; and first the case in which the two are uniform, the 
one horizontal, the other vertical. 

[2801 
THEOREM 11, PROPOSITION I1 

When the motion of a body is the resultant of two uniform 
motions, one horizontal, &e other perpendicular, the square 
of the resultant momentum is equal to the sum of the 
squares of the two component momenta.* 

Let us imagine any body urged by two uniform motions and 
let ab represent the vertical displacement, while bc represents 
the displacement which, in the same interval 
of time, takes place in a horizontal direc- 
tion. If then the distances ab and bc are, 
traversed, during the same time-interval, 
with uniform motions the corresponding 
momenta will be to each other as the distances ab and bc are to 
each other; but the body which is urged by these two motions 
describes the diagonal ac; its momentum is proportional to ac. 
Also the square of ac is equal to the sum of the squares of ab 
and bc. Hence the square of the resultant momentum is equal 
to the sum of the squares of the two momenta ab and bc. Q. E. D. 

SIMP. At this point there is just one slight difficulty which 
needs to be cleared up; for it seems to me that the conclusion 

* In  the original this theorem reads as follows: 
“Si aliquod mobile duplici motu cequabili moveatur, aempe orizontali et 

perpendiculari, impetus seu momentum lationis ex  utroque motu com- 
posita erit potentia equalis ambobus momentis priorum motuum.” 

For the justification of this translation of the word “potentia” and 
of the use of the adjective “resultant ” see p. 266 below. 

4; 
Fig. 109 
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just reached contradi&s a previous proposition * in which it is 
claimed that the speed [impeto] of a body coming from a to b is 
equal to that in coming from a to c; while now you conclude 
that the speed [impeto] at c is greater than that at  b. 

SALV. Both propositions, Simplicio, are true, yet there is a 
great difference between them. Here we are speaking of a 
body urged by a single motion which is the resultant of two 
uniform motions, while there we were speaking of two bodies 
each urged with naturally accelerated motions, one along the 
vertical ab the other along the inclined plane ac. Besides the 
time-intervals were there not supposed to be equal, that along 
the incline ac being greater than that along the vertical ab; 
but the motions of which we now speak, those along ab, bc, 
ac, are uniform and simultaneous. 

SIMP. Pardon me; I am satisfied; pray go on. 
b8II 

SALV. Our Author next undertakes to explain what happens 
when a body is urged by a motion compounded of one which is 
horizontal and uniform and of another which is vertical but 
naturally accelerated; from these two components results the 
path of a proje&ile, which is a parabola. The problem is to 
determine the speed [impeto] of the projettile at  each point. 
With this purpose in view our Author sets forth as follows the 
manner, or rather the method, of measuring such speed [impeto] 
along the path which is taken by a heavy body starting from 
rest and falling with a naturally accelerated motion. 

THEOREM 111, PROPOSITION I11 
Let the motion take place along the line ab, starting from 

rest at  a, and in this line choose any point c. Let ac represent 
the time, or the measure of the time, required for the body to 
fall through the space ac; let ac also represent the velocity 
[impetus seu momentum] at c acquired by a fall through the 
distance ac. In the line ab seleCt any other point b. The prob- 
lem now is to determine the velocity a t  b acquired by a body 
in falling through the distance ab and to express this in terms 
of the velocity at c, the measure of which is the length ut. Take 

* See p. 169 above. [Trans.] 
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tions; and since from the innumerable uniform velocities one 
only, and that not seledted a t  random, is to be compounded with 
a velocity acquired by naturally accelerated motion, I can 
think of no simpler way of seledting and measuring this than to 
assume another of the same kind.* For the sake of clearness, 
draw the vertical line ac to meet the horizontal line bc. Ac is 
the height and bc the amplitude of the semi-parabola ab, which 
is the resultant of the two motions, one that of a body falling 

from rest at a, through the distance ac, with naturally ac- 
celerated motion, the other a uniform motion along the horizon- 

tal ad. The speed acquired a t  c by a fall 
through the distance ac is determined by 
the height ac; for the speed of a body fall- 
ing from the same elevation is always one 
and the same; but along the horizontal one 
may give a body an infinite number of uni- 

&form speeds. However, in order that I may 
sele& one out of this multitude and sepa- 
rate it from the rest in a perfectly definite 
manner, I will extend the height cu upwards 
to e just as far as is necessary and will call 
this distance ae the “sublimity.” Imagine 
a body to fall from rest at  e; it is clear that 
we may make its terminal speed a t  a the 
same as that with which the same body 
travels along the horizontal line ad; this 

speed will be such that, in the time of descent along ea, it will 
describe a horizontal distance twice the length of ea. This 
preliminary remark seems necessary. 

The reader is reminded that above I have called the horizontal 
line cb the “amplitude” of the semi-parabola ab; the axis ac 
of this parabola, I have called its “altitude”; but the line ea the 
fall along which determines the horizontal speed I have called 
the “ sublimity.” These matters having been explained, I 
proceed with the demonstration. 

* Galileo here proposes to employ as a standard of velocity the terminal 
speed of a body falling freely from a given heipht. 

[2%1 
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SAGR. Allow me, please, to interrupt in order that I may 

point out the beautiful agreement between this thought of the 
Author and the views of Plato concerning the origin of the 
various uniform speeds with which the heavenly bodies revolve. 
The latter chanced upon the idea that a body could not pass 
from rest to any given speed and maintain it uniformly except 
by passing through all the degrees of speed intermediate between 
the given speed and rest. Plato thought that God, after having 
created the heavenly bodies, assigned them the proper and 
uniform speeds with which they were forever to revolve; and 
that He made them start from rest and move over definite dis- 
tances under a natural and re&ilinear acceleration such as 
governs the motion of terrestrial bodies. He added that once 
these bodies had gained their proper and permanent speed, their 
redtilinear motion was converted into a circular one, the only 

motion capable of maintaining uniformity, a motion in which 
the body revolves without either receding from or approaching 
its desired goal. This conception is truly worthy of Plato; and 
it is to be all the more highly prized since its underlying princi- 
ples remained hidden until discovered by our Author who re- 
moved from them the mask and poetical dress and set forth the 
idea in cone& historical perspe&ive. In view of the fact that 
astronomical science furnishes us such complete information 
concerning the size of the planetary orbits, the distances of 
these bodies from their centers of revolution, and their velocities, 
I cannot help thinking that our Author (to whom this idea of 
Plato was not unknown) had some curiosity to discover whether 
or not a definite “sublimity” might be assigned to each planet, 
such that, if it were to start from rest at  this particular height 
and to fall with naturally accelerated motion along a straight line, 
and were later to change the speed thus acquired into uniform 
motion, the size of its orbit and its period of revolution would be 
those a&ually observed. 

SALV. I think I remember his having told me that he once 
made the computation and found a satisfaktory correspondence 
with observation. But he did not wish to speak of it, lest in 

view 
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view of the odium which his many new discoveries had already 
brought upon him, this might be adding fuel to the fire. But 
if any one desires such information he can obtain it for himself 
from the theory set forth in the present treatment. 

We now proceed with the matter in hand, which is to prove: 

PROBLEM I, PROPOSITION IV 
To determine the momentum of a projedtile a t  each particular 

point in its given parabolic path. 
Let bec be the semi-parabola whose amplitude is cd and 

whose height is db, which latter extended upwards cuts the tan- 
gent of the parabola ca in a. Through the vertex draw the 
horizontal line bi parallel to cd. Now if the amplitude cd is 
equal to the entire height da, then bi will be equal to bu and 
also to bd; and if we take ab as the measure of the time re- 
quired for fall through the distance ab and also of the momen- 
tum acquired at  b in consequence of its fall from rest a t  a, then 
if. we turn into a horizontal direction the momentum acquired 
by fall through ab [impetum ab] the space traversed in the same 
interval of time will be represented by dc which is twice bi. But 
a body which falls from rest a t  b along the line bd will during 
the same time-interval fall through the height of the parabola 

bd. Hence a body falling from rest at  a, turned into a horizontal 
direction with the speed ah will traverse a space equal to dc. 
Now if one superposes upon this motion a fall along bd, travers- 
ing the height bd while the parabola bc is described, then the 
momentum of the body a t  the terminal point c is the resultant 
of a uniform horizontal momentum, whose value is represented 
by ab, and of another momentum acquired by fall from b to the 
terminal point d or c; these two momenta are equal. If, there- 
fore, we take ab to be the measure of one of these momenta, 
say, the uniform horizontal one, then bi, which is equal to bd, 
will represent the momentum acquired a t  d or c; and iu will 
represent the resultant of these two momenta, that is, the total 
momentum with which the projeaile, travelling along the pa- 
rabola, strikes a t  c. 

With 
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With this in mind let us take any point on the parabola, say 

e, and determine the momentum with which the projectile 
passes that point. Draw the horizontal t.f and take bg a mean 
proportional between bd and bf. Now since ab, or bd, is as- 
sumed to be the measure of the a 
time and of the momentum [mo- 
mentum veZocitutis] acquired by fall- 
ing from rest a t  b through the dis- 
tance bd, it  follows that bg will 
measure the time and also the 
momentum [impetus] acquired a t  f 
by fall from b. If therefore we lay 
off bo, equal to bg, the diagonal line 
joining a and o will represent thec 
momentum a t  the point e; because 
the length ab has been assumed to 
represent the momentum a t  b Fig. IIZ 
which, after diversion into a horizontal direction, remains con- 
stant; and because bo measures the momentum a t  f or e, ac- 
quired by fall, from rest a t  b, through the height bf. But the 
square of ao equals the sum of the squares of ab and bo. Hence 
the theorem sought. 

SAGR. The manner in which you compound these different 
momenta to obtain their resultant strikes me as so novel that 
my mind is left in no small confusion. I do not refer to the 
composition of two uniform motions, even when unequal, and 
when one takes place along a horizontal, the other along a 
vertical dire&ion; because in this case I am thoroughly con- 
vinced that the resultant is a motion whose square is equal to the 
sum of the squares of the two components. The confusion 
arises when one undertakes to compound a uniform horizontal 
motion with a vertical one which is naturally accelerated. I 
trust, therefore, we may pursue this discussion more a t  length. 

[2861 
SIMP. And I need this even more than you since I am not yet 

as clear in my mind as I ought to be concerning those funda- 
mental propositions upon which the others rest. Even in the 

case 
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case of the two uniform motions, one horizontal, the other 
perpendicular, I wish to understand better the manner in which 
you obtain the resultant from the components. Now, Salviati, 
you understand what we need and what we desire. 

SALV. Your request is altogether reasonable and I will see 
whether my long consideration of these matters will enable me 
to make them clear to you. But you must excuse me if in the 
explanation I repeat many things already said by the Author. 

Concerning motions and their velocities or momenta [movi- 
menti  e lor veZocitci o impetz] whether uniform or naturally ac- 
celerated, one cannot speak definitely until he has established 
a measure for such velocities and also for time. As for time we 
have the already widely adopted hours, first minutes and second 
minutes. So for velocities, just as for intervals of time, there is 
need of a common standard which shall be understood and 
accepted by everyone, and which shall be the same for all. As 
has already been stated, the Author considers the velocity of a 
freely falling body adapted to this purpose, since this velocity 
increases according to the same law in all parts of the world; 
thus for instance the speed acquired by a leaden ball of a pound 
weight starting from rest and falling vertically through the 
height of, say, a spear’s length is the same in all places; it is 
therefore excellently adapted for representing the momentum 
[impeto] acquired in the case of natural fall. 

It still remains for us to discover a method of measuring 
momentum in the case of uniform motion in such a way that all 
who discuss the subje& will form the same conception of i t s  
size and velocity [grundezzu e oelocitii]. This will prevent one 
person from imagining it larger, another smaller, than it really 
is; so that in the composition of a given uniform motion with 
one which is accelerated different men may not obtain different 
values for the resultant. In order to determine and represent 
such a momentum apd particular speed [impeto e velocitu particc- 
lure] our Author has found no better method than to use the 
momentum acquired by a body in naturally accelerated motion. 

The speed of a body which has in this manner acquired any 
momentum 
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time, it follows that the duration of fall and the speed 
acquired by the same body in passing over any other 
distance, is not represented by this second distance, but 
by a mean proportional between the two distances. 
This I can better illustrate by an example. In the ver- 
tical line ac, lay off the portion ab to represent the dis- 
tance traversed by a body falling freely with acceler- 
ated motion: the time of fall may be represented by any 
limited straight line, but for the sake of brevity, we shall 
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three different quantities, namely, space, time, and momentum, 
our next task is to find the time required for fall through a 

b881 
given vertical distance ac, also the momentum acquired a t  the 
terminal point c, both of which are to be expressed in terms of 
the time and momentum represented by ab. These two required 
quantities are obtained by laying off ad, a mean proportional 
between ab and ac; in other words, the time of fall from a to c is 
represented by ad on the same scale on which we agreed that 
the time of fall from a to b should be represented by ab. In like 
manner we may say that the momentum [impeto o grudo di 
velociti] acquired a t  c is related to that acquired a t  b, in the same 
manner that the line ad is related to ab, since the velocity varies 
diredly as the time, a conclusion, which although employed 
as a postulate in Proposition 111, is here amplified by the 
Author . 

This point being clear and well-established we pass to the 
consideration of the momentum [impeto] in the case of two 
compound motions, one of which is compounded of a uniform 
horizontal and a uniform vertical motion, while the other is 
compounded of a uniform horizontai and a naturally accelerated 
vertical motion. If both components are uniform, and one a t  
right angles to the other, we have already seen that the square of 
the resultant is obtained by adding the squares of the compo- 
nents [p. 2571 as will be clear from the following illustration. 

Let us imagine a body to move along the vertical ab with a 
uniform momentum [impeto] of 3, and on reaching b to move 

a toward c with a momentum [velocitci ed 
impeto] of 4, so that during the same time- 
interval it will traverse 3 cubits along the 
vertical and4 along the horizontal. But a 

6 particle which moves with the resultant ve- 
locity [velocih] will, in the same time, trav- 

erse the diagonal ac, whose length is not 7 cubits-the sum of 
ab (3) and bc (4)-but 5 ,  which is inpotenza equal to the sum 
of 3 and 4, that is, the squares of 3 and 4 when added make 25, 
which is the square of a, and is equal to the sum of the squares 

of 
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of ab and bc. Hence ac is represented by the side--or we may 
say the root-of a square whose area is 25, namely 5 .  

As a k e d  and certain rule for obtaining the momentum which 

results from two uniform momenta, one vertical, the other 
horizontal, we have therefore the following: take the square of 
each, add these together, and extra& the square root of the sum, 
which will be the momentum resulting from the two. Thus, in 
the above example, the body which in virtue of its vertical 
motion would strike the horizontal plane with a momentum 
[ f o m ]  of 3, would owing to its horizontal motion alone strike at 
c with a momentum of 4; but if the body strikes with a momen- 
tum which is the resultant of these two, its blow will be that of a 
body moving with a momentum [velocitir. eforza] of 5 ;  and such a 
blow will be the same a t  all points of the diagonal ac, since its 
components are always the same and never increase or diminish. 

Let us now pass to the consideration of a uniform horizontal 
motion compounded with the vertical motion of a freely falling 
body starting from rest. It is at once clear that the diagonal 
which represents the motion compounded of these two is not a 
straight line, but, as has been demonstrated, a semi-parabola, 
in which the momentum [impeto] is always increasing because 
the speed [wZocit&] of the vertical component is always increas- 
ing. Wherefore, to determine the momentum [impeto] at any 
given point in the parabolic diagonal, i t  is necessary first to 
fix upon the uniform horizontal momentum [impeto] and then, 
treating the body as one falling freely, to find the vertical 
momentum at the given point; this latter can be determined 
only by taking into account the duration of fall, a consideration 
which does not enter into the composition of two uniform mo- 
tions where the velocities and momenta are always the same; 
but here where one of the component motions has an initial 
value of zero and increases its speed [vdocitii] in dire& proportion 
to the time, it follows that the time must determine the speed 
[ueZocitii] a t  the assigned point. It only remains to obtain the 
momentum resulting from these two components (as in the case 
of uniform motions) by placing the square of the resultant equal 

to 

[~Sgl 
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APPENDIX 

Containing some theorems, and their proofs, dealing with 
centers of gravity of solid bodies, written by the same Author at  
an earlier date.* 

* Following the example of the National Edition, this Appendix which 
covers 18 pages of the Leyden Edition of 1638 is here omitted as being 
of minor interest. [ Truns.] 

[FINIS] 
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